Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
2008 SLSS
LEARNING OUTCOMES
Outline and emphasise best practice in teaching
trigonometry
Teaching for understanding as basic principle in teaching
trigonometry
Using ICT in the classroom to enhance understanding
Using the calculator as a teaching resource
Provide a summary of trigonometry which can be used in the
classroom for revision of topic
Assessment: Current strengths and weaknesses in trigonometry
Why Trig ?
Connections between
Trigonometry
and the other parts of the course.
Coordinate Geometry of the Circle. Q1. Paper 2
Parametric form of a circle
x 4 3cos ,
y 2 3sin
Vectors. Q2. Paper 2
Dot product
a . b | a | | b | cos ( where is the abgle between a and b )
Coordinate Geometry of the Line. Q3. Paper 2
Slope of a line: Angle between two lines.
Slope = tan ratio :
m1 m2
tan =
1 m1m2
Complex Numbers. Q3. Paper 1
Polar Form of a complex number
x yi r cos i sin .
Differentiation. Q6 and Q7. Paper 1
The differential of trigonometrical functions
Integration. Q8. Paper 1
Integral of trigonometrical functions: Using trigonometrical identities.
2cos4 cos2 d
= (cos6 + cos2 ) d
Further Calculus Option. Q8. Paper 1
Maclaurin Series for sin, cos and tan-1 : Max and Min Modelling:
Integration by parts.
Syllabus
Revise Meaning of Main Facts
and
Theorems from
Junior Cert. Geometry
LEAVING CERT TRIGONOMETRY
SUMMARY OF THE SECTIONS IN L.C. TRIG.
The Unit Circle.
Simple identities with proofs.
Radian Measure ( Length of arc and Area of sector)
Angles on page 9 of tables.
Solving Right Angled Triangles
TRIG
Sin Formula
Cos Formula
Solving Non-Right Angled Triangles
Area of triangle
More Identities from page 9 of tables
Solving Trig equations.
Limits of Trig functions.
Proofs required.
Unit Circle: Page 9
UNIT CIRCLE
(x,y)
1
A
x
y
y SinA
x CosA
NOW THE TRIANGLE IS
1
sinA
A
cosA
1
A
CosA
SinA
(cosA,sinA)
1
SinA
(CosA,SinA)
(x,y)
A
CosA
x CosA
y SinA
SinA
1
(0,0)
A
CosA
Using Pythagoras Sin2 A Cos 2 A 1
opp Sin A
Tan A
adj Cos A
Tan A
Sin A
Cos A
These are our first two identities on page 9 in tables.
Sin2 A Cos 2 A 1
Sin2 A 1 Cos 2 A
Cos 2 A 1 Sin2 A
Sin A
Tan A
Cos A
Sin A
CosA
Tan A
SinA TanA .CosA
2
Sin
A
Tan 2 A
Cos 2 A
1
Sec A 1 Tan A
Cos 2 A
2
2
1
Ex .1 Show that 1 Tan A
Cos 2 A
2
LHS = 1 tan 2 A
2
Sin A
= 1
2
Cos A
Cos 2 A Sin 2 A
=
Cos 2 A
1
RHS
2
Cos A
Use the CD on this
Ex .2 Show that Cos 4 A Sin4 A Cos 2 A Sin2 A
LHS = Cos 4 A Sin4 A
= (Cos2 A Sin2 A)(Cos2 A Sin2 A)
= (Cos2 A Sin2 A)(1)
= Cos A Sin A = RHS
2
2
BASIC GUIDES IN PROVING IDENTITIES.
1. Start with one side (usually the more complicated).
2. Convert unfamiliar terms to sin and cos, if possible.
3. Keep an eye on the target.
4. At each step do what seems sensible.
5. Try another approach if things become too complicated.
Note: Emphasise algebraic procedures.
Ex .3 Show that Sec - Tan .Sin Cos
LHS = Sec -Tan .Sin
1
Sin
.Sin
Cos Cos
1 Sin2
Cos
Cos 2
Cos
Cos = RHS
Radian Measure
o
Radius = r
a
Radius = r
o
2 rads
1 rad
b
a
b
Length of arc = r
Measure of the angle in radians =
Length of arc ab =2r
Length of arc
Length of radius
Semi-Circle
Radius = r
Length of semi-circle = r
= (r)
= r units
Measure of the angle in radians =
Length of Arc(semi-circle)
Radius
r
radians
r
180 = radians
ANGLES ON PAGE 9 IN TABLES
NOTE : radians 180
0
180
90
60
45
30
Link to Java Script.
ANGLES > 900
90o
(-270o )
SIN + ALL +
180o
(-180o )
180o -
180o +
360o -
0o
360o
TAN + COS +
270o
(-90o )
Link to Java Script
UNIT CIRCLE
(0,1)
(1,0)
(-1,0)
(0,-1)
Find the Sin 120
Step 1. Draw a circle with the four quadrants
Step 2. Mark in the 120 line
Step 3. Take 120 from the BASE LINE angle 180 60
Sin120 Sin60
As it is in the 2
nd
3
2
quadrant it is a answer.
120
90o
0o
360o
180o
270o
Other examples : (i) Sin 123 (ii) Cos 300 (iii) Tan 290
Answer s (i) 0.8387
(ii) 0.5
(iii) - 2.7475
Use your calculator to check answers
making sure you understand why you get a
positive or negative answer.
1
Ex .1 If 0 A 360 , find the values of A for which Sin A 2
S
wT
A
Cw
Forget about the sign at first.
1
If Sin A
2
A 30
As Sin is Negative the angle can only be in the 3rd or 4 th quadrant.
Add 30 to 180 and subtract 30 from 360
So A {210 and 330 }
3
Ex .2 If Cos A , 0 A 360 , find two values of A.
2
wS
A
wT
C
Forget about the sign at first.
If Cos A
3
2
A 30
As Cos is Negative the angle can only be in the 2 nd or 3rd quadrant.
So A {150 and 210 }
SOLVING RIGHT ANGLED TRIANGLES
a
Ex .1 Find ab in the following triangle
3
c
ab 3 2 4 2
2
ab 9 16 25
2
b
4
ab 25 5
Some common triplets used
5
3
4
3 ,4 , 5
10
6
13
5
8
12
6, 8, 10
5, 12, 13
USE OF SIN , COS, TAN FORMULAE.
A
ADJACENT
900
A
900
ADJACENT
Opp
Sin
Hyp
Adj
Cos
Hyp
Opp
Tan
Adj
8
Ex .1 Find the length of the side x in the diagram.
30
x
x
cos 30
8
3 x
2 8
3
x 8
4 3
2
Ex .2 Find the size of the angle x in the diagram.
5
tan x
4
tan x 1.25
x tan1 1.25
x
4
5
5
Ex.3 If Cos , find Sin and Tan2 , 0 90
13
Note: If given ratio always draw right angled triangle
x
Adj = 5
Adj 5
Cos
Hyp 13
By Pythagoras 13 2 x 2 5 2
x 12 (Note triplet)
Opp 12
Sin
Hyp 13
2
144
Opp 12
2
2
Tan (Tan )
25
Adj 5
2
Ex3. If SinA
1
, for 0 A 90 Find (i) 2 SinA
2
(i )
1
2SinA 2(
)
2
Multiply above and below by 2
2
2
.
2 2
( ii ) SinA
(ii) Sin2A
2
2
2 2
2
1
2
From the handy angles (page 9) A 45
Sin 2 A Sin90 0
2A 90
2
SOLVING NON RIGHT ANGLED TRIANGLES
We use three things here.
1. Area of triangle.
2. Sine Rule
1
a .b .SinC
2
a
b
c
SinA SinB SinC
3. Cosine Rule a 2 b 2 c 2 2b.c.CosA
B
a
c
A
A B C 180
C
b
1. Area of triangle.
1
a .b .SinC
2
It is important to emphasise that in order to use the
area of triangle formula that you need two sides and the
included angle.
Example 1. Find the area of the triangle ,
correct to one decimal place
8cm
37o
10cm
1
Area 8.10.Sin 37
2
24.1cm 2
Example 2. The area of the triangle shown is 16.2 cm 3
Find the measure of the angle A. 5
A
8
1
Area of ( one side)(other side)(Sin of Included Angle) 16.2
2
1
Area of ( 8 )( 5 )SinA 16.2
2
20 SinA 16.2
16.2
SinA
20
SinA 0.81
A 54 06'
USE OF SIN AND COS RULE.
MOST IMPORTANT RULE.
You use the COS RULE if given
(a) Three sides
(b) Two sides and the included angle.
You use the SIN RULE in all other cases.
Ex .1 Find the size of the largest angle in the triangle
7
9
8
Given three sides so you have to use the Cos Rule
The largest side is always across from the largest angle.
You always start with the side across from the angle
you are dealing with.
7
X0
8
9
9 2 7 2 8 2 2( 7 )( 8 )Cos x
81 47 64 112Cos x
81 111 112Cos x
81 111 112Cos x
30 112Cos x
Cos x .2679
x 7428'
30
112
x Cos 1 .2679
Cos x
Ex .2 Find the length of the side x in the following diagram.
9
x
320
10
Given two sides and the included angle Cos Rule.
You always start with the side across from the angle
you are dealing with.
x 2 9 2 10 2 2(9)(10)Cos 32
x 2 81 100 180(.8480 )
x 2 181 152.64
x 2 28.36
x 28.36
x 5.3254
a
Ex 3. Given triangle abc find bc .
120o
5cm.
30o
b
bc
5
Sin120 Sin 30
bc
5 Sin120
Sin30
Using page 9
bc
3
2
5
1
2
5
3
2
21 5
3
2
. 21 5 3
c
a
Ex 4. Given triangle abc find abc .
120o
b
8
5
Sin120 Sinabc
8
5
3 Sinabc
2
5 3
Sinabc
16
Sinabc .54127
abc Sin 1.54127 32.77
8cm
5cm.
c
MORE DIFFICULT PROBLEMS ON SIN AND COS RULES.
Ex .1 A and B are the goalposts at one end of a football pitch and F
is the corner flag. (as shown in the diagram), A, Band F lie in
a straight line with AB 7.4m and BF 28m.
A player is at position P, such that PBF 85 and PFB 25
A
7.4 m B
28 m
F
P
Calculate (i) PF
(ii) PA (iii) APB
7.4 m
A
B
950
28 m
850
F
250
700
P
This is the Master Diagram. Fill in all the angles you know.
Now split up the diagram into the individual triangles.
A
7.4 m
B
B
28 m
850
950
F
A
35.4 m
250
250
700
P
P
F
P
B
28 m
850
F
250
700
P
To find PF use the Sin rule
PF
28
Sin85 Sin70
28 Sin85
PF
Sin70
PF
28(.9962 )
.9397
PF 29.68 m
35.4 m
A
F
250
29.69 m
P
To find AP use the Cos rule.
AP 35.4 2 29.69 2 2( 35.4 )( 29.69 )Cos 25
2
AP 1253.16 881.5 2102.1Cos 25
2
AP 2134.5 1905.15
2
AP 229.35 15.14
A
7.4 m
B
950
15.14 m
P
To find APB use the Sin rule.
15.14
7.4
Sin95 SinAPB
7.4 Sin95
SinAPB
15.14
SinAPB .4896
APB Sin1 .4896 29.31
Ex .2. In a triangle abc, ab 7cm , bc 8 cm and the area of the triangle
abc is 14cm 2 . Find two values of the angle abc.
Make a sketch of the resulting triangles
c
8 cm
a
7 cm
b
Area of abc 21 ( 7 )( 8 )Sinabc 14 cm 2
28 Sinabc 14
Sinabc
A
wS
w
T
C
14
28
Sinabc
The angle is in the first and second quadrent.
abc 150
abc 30
1
2
Sketch of the two triangles
c
8 cm
300
a
a
7 cm
c
b
1500
7 cm
b
8 cm
THREE D PROBLEMS
Ex .1 pqr are points on level ground. rw is a TV mast which
is held in place by two cables pw and qw. If rw is 5m and
the wpr wpr is 45 and wqr 120 , show that pq 5 3
w
5m
r
1200
450
p
450
q
Isolate the various triangles NOTE the right angles.
w
5m
w
5m
r
5m
r
450
1200
5m
r
450
p
Using the Cos rule we
q
p
5
Tan45
pr
5
1
pr
5
Tan45
qr
5
1
qr
pr 5 m
qr 5 m
q
can now find pq
pq 5 2 5 2 2( 5 )( 5 )Cos120
2
pq 25 25 50( .5 )
2
pq 75
2
pq 75
pq 5 3
2007 Paper 2, Q5 (c).
s
s
h
h
r
r
60
p
s
c
r
60
30
q
h
r
30
p
p
q
c
q
s
s
h
3
p
h
r
h 3
q
c
h
To find |prq|, use the cosine formula
r
r
2
60
30
p
q
tan 60
h
pr
h
pr
h
| pr |
3
3
tan 30
h
rq
1
h
3 rq
2
h
h
c
h
3
2
h 3 cos prq
3
3
h2
2
c 3h2 2h2 cos prq
3
h2
2
c 3h2 2h2 cos prq
3
3c 2 h2 9h2 6h2 cos prq
2
But given 3c2 13h2
13h2 h2 9h2 6h2 cos prq
3h2 6h2 cos prq
1
cos prq
2
prq 120
LENGTH OF ARC OF CIRCLE
Length of arc r ( is in radians)
Ex .1 Find the length of the arc ab in the diagram below.
o
0
7 30
b
a
METHOD 1
Length of arc r ( is in radians)
Length of arc 7
6
3.142
Length of arc 7
6
Length of arc 3.665 cm
METHOD 2
Length of circle 2R
We have 30 parts of a full circle
30
Length of arc
of a circle
360
1
Length of arc of 2R
12
1
Length of arc 2 7 3.665
12
AREA OF SECTOR OF CIRCLE
1
Area of sector r 2 ( is in radians)
2
Ex .1 Find the area of the sector oab in the diagram below.
o
0
7 45
METHOD 1
1 2
Area r ( is in radians)
2
1 2
Area (7)
2
4
Area 19.24 sq .units
b
a
METHOD 2
Area of circle R 2
We have 45 parts of a full circle
45
Area of sector
of a circle
360
1 2
Area of sector R
8
1
Area of sector ( 7 )2 19.24
8
Ex .2 2000 Q.4 (a) Paper 2. The area of a sector of a circle
is 27cm 2 . The radius is 6cm. Find in radians the measure
of the angle in the sector.
1 2
Area r ( is in radians) 27
2
1
Area ( 6 )2 27
2
18 27
6cm
27 3
radians
18 2
NOTE You can convert radians to degrees as follows.
radians 180 1 radian
180
3
180 3
radians
. 85.94
2
2
COMPOUND ANGLE FORMULAE
Sin( A B ) SinACosB CosASinB
Sin( A B ) SinACosB CosASinB
NOTE Sign changes
Cos( A B ) CosACosB SinASinB
Cos( A B ) CosACosB SinASinB
NOTE Sign changes
TanA TanB
Tan( A B )
1 TanATanB
TanA TanB
Tan( A B )
1 TanATanB
NOTE Sign changes
COFUNCTION FORMULAE
Sin(90 A) CosA
Ex 1.
Ex 2.
1
Sin(90 45) Cos 45
2
3
Sin(90 30) Cos60
2
Cos(90 A) SinA
Ex 1.
1
Cos(90 45) Sin45
2
Ex 1.
3
Cos(90 30) Sin60
2
EXAMPLES ON COMPOUND ANGLE FORMULAE
Ex .1 Find an expression in surd form for Sin75
Sin75 Sin( 45 30 ) Sin45Cos 30 Cos 45 Sin30
1
3 1 1
.
.
2 2
2 2
31
2 2
31 2
.
2 2
2
6 2
4
Ex .2 If Tan(x 45 ) a find Tanx in terms of a.
Tanx Tan45
Tan( x 45 )
a
1 TanxTan45
Tanx 1
a
1 Tanx .1
Tanx 1 a aTanx
Tanx aTanx a 1
Tanx( 1 a ) a 1
Tanx
a1
1 a
Sin(A B)
Ex .3 Prove that
TanA TanB
CosACosB
Sin(A B) SinACosB CosASinB
CosACosB
CosACosB
Divide each term by CosACosB
SinACosB CosASinB
CosACosB CosACosB
CosACosB
CosACosB
SinA SinB
CosA CosB
1
TanA TanB
DOUBLE ANGLE FORMULAE
Cos 2 A Cos A Sin A
2
2
This formula is easy to derive.
Cos 2 A Cos( A A )
Tan2 A Tan( A A )
CosACosA SinASinA
Cos A Sin A
2
2
Sin2 A 2 SinACosA
This formula is easy to derive.
Sin2 A Sin( A A )
SinACosA CosASinA
2 SinACosA
2TanA
1 Tan2 A
This formula is easy to derive.
Tan2 A
TanA TanA
1 TanATanA
2TanA
1 Tan2 A
EXAMPLES ON DOUBLE ANGLE FORMULAE
Ex .1 Express Sin3A in terms of SinA
Sin3 A Sin( 2 A A )
Sin2 ACosA Cos 2 A .SinA
2 SinACosACosA ( 1 Sin2 A )( SinA )
2 SinA( Cos 2 A ) SinA 2 Sin3 A
2 SinA( 1 Sin2 A ) SinA 2 Sin2 A
2 SinA 2 Sin3 A SinA 2 Sin3 A
3 SinA 4 Sin3 A
3
, wher 0 A 90 , find the value of
5
(i) Sin2A
(ii) Cos2A
Ex 2 If SinA
From the right angled triangle.
5
3
A
4
CosA
5
4
( i ) Sin2A 2SinACosA
3 4
2. .
5 5
24
25
( ii ) Cos2A Cos 2 A Sin2 A
2
4 3
5 5
16 9
25 25
7
25
2
DOUBLE ANGLE FORMULAE IN TAN
1 Tan2 A
Cos 2 A
1 Tan2 A
Pr oof of this
Cos 2 A Cos 2 A Sin2 A
Cos 2 A Cos 2 ATan2 A
Cos 2 A( 1 Tan2 A )
1
2
(
1
Tan
A)
2
Sec A
1 Tan2 A
1 Tan2 A
2TanA
Sin2 A
1 Tan2 A
Pr oof of this
Sin2 A 2 SinACosA
2 SinA
.Cos 2 A
CosA
2TanA .
1
Sec 2 A
2TanA
1 Tan2 A
HALF ANGLE FORMULAE
1
Cos 2 A ( 1 Cos 2 A )
2
This formula is easy to derive.
1
Sin A ( 1 Cos 2 A )
2
2
This formula is easy to derive.
Cos 2 A Cos 2 A Sin2 A
Cos 2 A Cos 2 A Sin2 A
Cos 2 A Cos 2 A ( 1 Cos 2 A )
Cos 2 A ( 1 Sin2 A ) Sin2 A
Cos 2 A 2Cos 2 A 1
Cos 2 A 1 2 Sin2 A
2Cos 2 A Cos 2 A 1
2 Sin2 A 1 Cos 2 A
1
Cos A ( 1 Cos 2 A )
2
1
Sin A ( 1 Cos 2 A )
2
2
2
CHANGING PRODUCTS INTO SUMS AND DIFFERENCE S
THE PROOFS OF THESE ARE NOT REQUIRED
2CosACosB Cos( A B ) Cos( A B )
2 SinACosB Sin( A B ) Sin( A B )
2 SinASinB Cos( A B ) Cos( A B )
2CosASinB Sin( A B ) Sin( A B )
SUMS AND DIFFERENCE S INTO PRODUCTS
THE PROOFS OF THESE ARE NOT REQUIRED
A B
A B
CosA CosB 2Cos
Cos
2
2
CosA CosB 2 Sin
SinA SinB 2 Sin
A B
A B
Sin
2
2
A B
A B
Cos
2
2
SinA SinB 2Cos
A B
A B
Sin
2
2
These last two sets of identities are
used mainly for solving Trig Equations
TRIG EQUATIONS
Type 1. Quadratic
Ex .1 Find all the solutions of Cos 2 x Cosx Sin2 x 0
in the domain 0 x 360
Cos 2 x Cosx Sin2 x 0
Change Sin2 x into 1 - Cos 2 x
Cos 2 x Cosx ( 1 Cos 2 x ) 0
Cos 2 x Cosx 1 Cos 2 x 0
2Cos 2 x Cosx 1 0
Factorise
( 2Cosx 1 )( Cosx 1 ) 0
2Cosx 1 0
Cosx 1 0
1
Cosx
2
Cosx 1
We now have two simple trig equations.
The reference angle is 60
It is a negative answer so it is
in the quadrants shown.
wS
A
wT
C
x 120
x 240
x 0
x 360
SOLUTION ON AUTOGRAPH
4
y
3
2
1
x
–30
30
–1
–2
–3
–4
60
90
120
150
180
210
240
270
300
330
360
390
Ex .2 Find all the solutions of 2Sin2 2 x Cos 2 x 1
in the domain 0 x 360
2 Sin2 2 x Cos 2 x 1
Change Sin2 2 x into 1 - Cos 2 2 x
2( 1 Cos 2 2 x ) Cos 2 x 1
2 2Cos 2 2 x Cos 2 x 1
2Cos 2 2 x Cos 2 x 1 0
Factorise
( 2Cos 2 x 1 )( Cos 2 x 1 ) 0
( 2Cos 2 x 1 )( Cos 2 x 1 ) 0
2Cos 2 x 1 0
1
Cos 2 x
2
The reference angle is 60
It is a negative answer so it is
in the quadrents shown.
wS
A
wT
C
2x 120 + n 360
2x 240 + n 360
n = 0 2x 120° x = 60°
n = 0 2x 240° x = 120°
n = 1 2x 480° x = 240°
n = 1 2x 600° x = 300°
n = 2 2x 840° x = 420°
n = 2 2x 960° x = 480°
Outside the domain 0 x 360
Cos 2 x 1 0
Cos 2 x 1
2x 0 + n 360
n = 0 2x 0° x = 0°
n = 1 2x 360° x = 180°
n = 2 2x 720° x = 360°
n = 3 2x 1080° x = 540°
Outside the domain 0 x 360
All the values of x are
60, 120, 240,300, 0, 180 and 360
Ex .3 x 0 and x 60 are two solutions of aSin2 2 x Cos 2 x b
Find the value of a and the value of b, where a , b N.
Using these values of a and b, find all the solutions of
the equation where 0 x 360.
aSin2 2 x Cos 2 x b 0
At x 0
aSin2 0 Cos0 b 0
a( 0 ) 1 b 0
b1
At x 60
aSin2 60 Cos60 b 0
2
3 1
a
b0
2 2
3 1
a b0
4 2
3a 3
a2
0
4 2
Now the equation is 2 Sin2 2 x Cos 2 x 1 0 which can
be solved in the same way as the previous example.
Type 2. Double Angles
Ex .1 Write Cos2x in terms of Sinx. Hence, find all the solutions
of the equation Cos2x - Sinx 1, in the domain 0 x 360.
Cos 2 x Cos 2 x Sin2 x
Cos 2 x ( 1 Sin2 x ) Sin2 x
Cos 2 x 1 2 Sin2 x
Now we have to solve the equation Cos2x - Sinx 1
Replacing Cos2x with 1 - Sin2 x we have.
1 2 Sin2 x Sinx 1
2 Sin2 x Sinx 0
Factorise
Sinx( 2 Sinx 1 ) 0
Sinx 0
x 0
x 180
x 360
2 Sinx 1 0
1
Sinx
2
x 210
x 330
Type 3. Sums and difference into products
Ex .1 (i) Express Sin5x Sin3x as a product of Sin and Cos.
(ii) Find all the solutions to the equation Sin5x Sin3x 0
in the domain 0 x 180.
(i)
5x 3x
5x 3x
Sin5 x Sin3 x 2 Sin
Cos
2
2
2 Sin4 xCosx
( ii )
Sin5x Sin3x 0
2 Sin4 xCosx 0
Factorise
NOTE : This is already factorised
(2Sin4 x)( xCosx) 0
2 Sin4 x 0
Sin4 x 0
4x 0 + n 360
4x 180 + n 360
n = 0 4x 0° x = 0°
n = 0 4x 180° x = 45°
n = 1 4x 360° x = 90°
n = 1 4x 540° x = 135°
n = 2 4x 720° x = 180°
n = 2 4x 900° x = 225°
n = 3 4x 1080° x = 270°
Outside the domain 0 x 180
Outside the domain 0 x 180
All the values of x are
0, 90, 180, 45 and 135
Cosx 0
x 90
SOLUTION ON AUTOGRAPH
Limits 1
1. The first thing normally tried in evaluating any limit is to evaluate
f(a)
1
2
3
4
f (a) =
Lim f ( x) =
k R
k
xa
k R, k 0
k
kR
k
kR
0
k
0
Limits 2
If f (a) does not give one of the previous answers, we need to try something else.
0
i.e. if we got , , or , - (indeterminate forms)
0
2. Find a common factor and cancel
sin
3. Lim
= 1 Special Limit
x 0
Examples: Evaluate the following limits
2
2
x
x-6
x 4 x 3 4. Lim
1. Lim
x2
x2
x-2
x3
sin 5
sin 4
5. Lim
2. Lim
0
0
2
4
3. Lim cos 4
6. Lim 4 cos 2 9
0
0
7. Lim 4 tan 2 2 x
x 0
sin 2 x
8. Lim
0
3x 2
sin 4 x - sin 2 x
9. Lim
0
3x
d
Area of abc Area of sector abc Area of adc
b
r
a
1 2
r sin
2
sin
r
c
1 2
r
2
sin
sin
sin
As 0
1
sin
Limit
Limit
0
0
sin
sin
sin
tan
1
1 2
r tan
2
tan
sin
1
cos
1
1
1
Limits
Link to Excel
Example 1.
Find limit
0
Limit
0
sin5θ
sin4θ
5 Sin5 4
4 5 Sin4
5
1 1
4
5
4
2007 Q4
(cosA sinA)2 cos 2 A + sin2 A + 2cosAsinA
1 + 2cosAsinA
1 + sin2A
6cos 2 x sinx - 5 0
6(1- sin2 x) sinx - 5 0
6sin 2 x sinx - 1 0
(2sinx 1)(3sinx + 1) 0
2sinx 1 0
1
or
sinx
2
3sinx + 1 0
1
sinx
3
x 30
x 199
x 150
x 341
(i)
c
What if ?
90o
a
o
ac
cos
ab
ab cos ac
c
b
ab diaameter = 2r
ac 2rcos
a
o
b
(ii)
c
a
1 2
Area of semicicle = r
2
o
b
Area of region abc = Area of aoc + Area of sector obc.
1
1
Area of region abc = ao ac sin + (r)(r)(2 ).
2
2
1
Area of region abc = r(2rcos )sin + r 2 .
2
1 2
Area of region abc = r (2cos sin ) + r 2 .
2
1 2
1 2
2
Area of region abc = r sin2α + r α = πr
2
4
1
2
sin2α + 2α = π ( multiplying each term by 2 )
2
r
2006 Q 4
2006 Q 5
2006 Q 5
2002 Q.4
(a) T he length of an arc of a circle is 10cm. The radius of the circle
is 4cm. The measure of the angle at the centre of the circle is .
(i) Find in radians.
(ii) Find in degrees, correct to the nearest degree.
( b ) (i) Write Cos2x in terns of Sinx.
(ii) Hence find all the solution of the equation
Cos 2x - Sinx 1
in the domain 0 x 360.
( c ) A triangle has side a, b and c.
The angles opposite a, b and c are A, B and C respective ly.
(i) Prove that a 2 b 2 c 2 2 bcCosA .
(ii) Show that c(bCosA - aCosB) b 2 a 2
c
C
A
a
B
c
(a)
(i) Length of arc r ( in Radians)
10 4 r
10
r
2.5 radians
4
( ii ) radians 180
180
1 radian
2.5 radians
180
2.5 140
(b) Identity
( c ) (i) This is the proof of the Cos rule.
( ii ) To show that c(bCosA - aCosB) b 2 a 2
2
2
2
a
b
c
As a 2 b 2 c 2 2 bcCosA CosA
2 bc
b2 a2 c 2
2
2
2
As b a c 2 acCosB CosB
2 ac
Sub in for CosA and CosB into c(bCosA - aCosB) b 2 a 2
a2 b2 c 2
b2 a2 c 2
c(b
-a
) b2 a2
- 2bc
2 ac
Simplify this and we get b 2 a 2 b 2 a 2
2002 Q.5
Sin7
0 Sin 2
(b) xyz is a triangle where xy 8cm. and yz 6cm.
(a) Evaluate Limit
Given that the area of the triangle xyz is 12cm 2 , find
(i) the two possible values of xyz
(ii) the two possible values of xz , correct to one decimal place.
(c) A is an obtuse angle such that
4 3
Sin A Sin A
6
6
5
(i) Find SinA and TanA.
1
(ii) Given that Tan(A B) , find TanB and express you answer
2
p
in the form
where p,q Z and q 0
q
(a)
Limit
0
Sin7
Sin2
Sin7
7
7
= Limit
0
Sin2
2
2
7 7
=
2 2
1
( b ) Area a .b .SinC
2
1
Area 8.6.Sin 12
2
24 Sin 12
1
Sin
2
30 and 150
z
x
6
8
y
Case 1
Case 2
z
x
x
8
30
z
6
8
130
y
xz 8 2 6 2 2( 8 )( 6 )Cos 30
2
3
64 36 72
2
37.646
xz 37.646
xz 6.136
xz 6.1
6
y
xz 8 2 6 2 2( 8 )( 6 )Cos130
2
3
64 36 72
2
162.353
xz 162.353
xz 12.741
xz 12.7
( c ) (i)
4 3
Sin A Sin A
6
6
5
Using the formula SinA SinB
A 6 A 6
A 6 A 6
Sin A Sin A 2 Sin
Cos
6
6
2
2
A 6 A 6
A 6 A 6
2 Sin
Cos
2
2
2 6
2 A
2 Sin Cos 2 Sin ACos
2
6
2
3 4 3
4
2 SinA
SinA
2
5
5
Drawing a right angled triangle
5
4
A
3
4
TanA
3
( ii )
1
Tan(A B)
2
TanA TanB
Tan(A B)
1 - TanA.TanB
4
1
3 TanB
4
2 1 - 3 .TanB
8
4
2TanB 1 TanB
3
3
4
8
2TanB TanB 1
3
3
6TanB 4TanB 3 8
3
3
10TanB 5
1
TanB 2
Trigonometric Formulae: Proofs Required.
© SLSS 2007