Download 29. Inverse Trigonometric Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mathematics
Session
Inverse Trigonometric Functions
Session Objectives
Session Objectives
1. Basic Concepts of inverse
trigonometric functions
• Definition
• Domain and Range
2. Properties of Inverse Trigonmetric Function
3. Conversion of one form of Inverse Trig. Fn. to other
Forms
4. Identities containing inverse trigonometric functions
Basic Concepts - Definition
Inverse of a Function :
Function must be bijective
Trigonometric functions are periodic.
sin x is periodic with period equal to 2π
Not
Bijective
Hence , inverse of sin x
should not be valid ????
Basic Concepts - Definition
However, trigonometric functions
are bijective for particular value
sets in the domain.
sin x is bijective in [-π/2 , π/2 ]
and in [π/2 ,3π/2 ] ……. for x  R
sin-1 x is valid in these value sets
Inverse trigonometric function - principal value set
Smallest Numerical Angle
[-π/2 , π/2 ]
Basic Concepts - Definition
Inverse trigonometric functions 
inverse circular function.
arc sin x 
sin-1x ( principal value )
Inverse Trigonometric function sin –1 x
Domain of sin
–1x
( value which x can take ) is [-1,1]
Y
3/2
Range of sin
/2
-1
1
-/2
X
–1
x
(values which sin–1x can
take ) is [- /2, /2 ]
Inverse Trigonometric function cos–1 x
Domain of cos
–1x
( value which x can take ) is [-1,1]
Y

/2
-1
1
-
X
Range of cos
–1
x
(values which cos–1x can
take ) is [0, ]
Inverse Trigonometric function tan–1 x
Domain of tan
–1x
( value which x can take ) is (- , )

/2
X
-/2
-
Range of tan
–1
x
(values which sec–1x can
take ) is (-/2, /2)
Inverse Trigonometric function sec–1 x
Domain of sec –1x ( value which x
can take ) is (- -1] U [1, )
Y

/2
-1
Range of sec
1
X
-/2
-
–1
x
(values which sec–1x
can take ) is [0, ]
excl. x = /2
Inverse Trigonometric function cot–1 x
Domain of cot
–1x
( value which x can take ) is (- , )
Y

/2
X
-/2
-
Range of cot
–1
x
(values which cot–1x can
take ) is (0, )
Inverse Trigonometric function Domain and Range
Function
Domain
Range
sin-1x
[-1,1]
[-/2, /2]
cos-1x
[-1,1]
[0, ]
Function
Domain
Range
tan-1x
(- , )
(-/2, /2)
sec-1x
(-, -1] U [1, )
[0, ] excl. /2
cosec-1x
(-, -1] U [1, )
[-/2, /2] excl. 0
cot-1x
(- , )
(0, )
Inverse Trigonometric function
– Properties
Always remember to keep the
constraint of domain and range ,
while solving inverse trigonometric
functions.
sin( sin-1 x) = x
and cos (cos-1 x) = x if
tan( tan-1 x) = x
x if
x is in ( -, )
sin-1 ( sin x) = x
if
x is in [-/2, /2]
x is in [-1,1]
cos-1 ( cos x) = x
if
x is in [0, ]
sec-1 ( sec x) = x
if
x is in [0, ] excl. x = /2
Inverse Trigonometric function
– Properties
sin-1 (-x) = -sin-1 (x) if
x is in [-1,1]
cos-1 (-x) = - cos-1x if x is in [-1,1]
tan-1(-x) = - tan-1x if x is in ( -, )
cot-1(-x) =  - cot-1x if x is in (-,)
cosec-1(-x) = - cosec-1x if x is in (-,-1] U [1,)
sec-1(-x) =  - sec-1x if x is in (-,-1] U [1,)
Inverse Trigonometric function
– Properties
Always remember to keep the constraint of
domain and range , while solving inverse
trigonometric functions.
sin-1 (-x) = -sin-1 (x) if
x is in [-1,1]
Let y = sin-1(-x) ; constraint :
sin y = - x
y is in [-/2, /2]
 x = - sin y = sin ( -y )
sin-1(-x) = sin-1 ( sin (-y))
sin-1(-x) = -y
 sin-1(-x) = -sin-1 x
Class Exercise - 1
Find the principal value of
2 
 sin 3 


1 
sin
Solution :
2 

Let sin1  sin
 

3 

2 

 sin    sin

3


 sin  
3
2
  
where    , 
 2 2
  

3
Class Exercise - 2
Find the principal value of
sin –1 ( sin 5 )
Solution :
5
Wrong
Let y = sin-1(sin 5).Hence y is in [-/2,/2]
Now , sin 5 = sin [(5/). ] = sin ( 1.59)
= - sin (2 - 1.59)
= sin ( 1.59  -2)
sin 5 = sin ( 5 - 2 )
sin-1(sin 5) = sin-1 ( sin ( 5 - 2 ))
=5- 2
in [-/2, /2]
Other important properties
sin-1 x+ cos-1 x = /2 ;
if x is in [-1,1]
1
tan
1
x  tan
1 
y  tan
xy 
 1  xy 


If x > 0 , y > 0 and xy < 1
1
tan
1
tan
1
x  tan
1
x  tan
1 
xy 
 1  xy  If x<0,y<0 and xy < 1


y     tan
1 
y    tan
If x > 0 , y > 0 and xy > 1
xy 
 1  xy 


Class Exercise - 5
Find the value of
1  1 
tan
1  1 
 2   tan
 
3
 
Solution :
1
1
Let tan1     and tan1    
2
3
1
1
  
 tan     and tan     and ,     , 
2
3
 2 2


1 1



2 3

Now tan       
 1   1 . 1  
2 3

   

 tan       1
Class Exercise - 5
Find the value of
1
1
tan1    tan1  
2
3
Solution :  tan       1
     

4
why
    
5
4
Class Exercise - 9
In triangle ABC if A = tan-12
and B = tan-1 3 , prove that
C = 450
Solution :
For triangle ABC , A+B+C = 
tan A  2; tanB  3
tan  A  B   tan    C 
tan A  tanB
  tanC
1  tan A.tanB
  1   tanC  tanC  1

32
  tanC
1  3.2
Inverse Trigonometric function
– Conversion
To convert one inverse function to
other inverse function :
1. Assume given inverse function as some angle
( say  )
2.
Draw a right angled triangle satisfying the angle.
Find the third un known side
3. Find the trigonometric function from the triangle in
step 2. Take its inverse and we will get  = desired
inverse function
Conversion - Illustrative
Problem
The value of cot-1 3 + cosec-1  5 is
(a) /3
(b) /2
( c) /4
(d) none
Step 1
Assume given inverse function as some
angle ( say  )
Let cot-1 3 + cosec-1  5 = x + y,
Where x = cot-13 ; cot x = 3 and
y = cosec-1  5 ; cosec y =  5
Conversion - Illustrative
Problem
The value of cot-1 3 + cosec-1  5 is
(a) /3
(b) /2
( c) /4
(d) none
Step 2
Draw a right angled triangle satisfying the
angle. Find the third unknown side
 10
x
3
5
y
2
1
1
cot x = 3 , tan x = 1/3
cosec y =  5 , tan y = 1/2
Conversion - Illustrative
Problem
The value of cot-1 3 + cosec-1  5 is
(a) /3
Step 3
(b) /2
( c) /4
(d) none
tan x = 1/3 ,tan y = 1/2
Find the trigonometric function from the
triangle in step 2. Take its inverse and we will
get  = desired inverse function










1  1 

3
2

tan( x  y) 

1
1
1 . 
3 2
tan ( x+ y) = 1
 x + y = /4
tan( x  y)   tan x  tan y 
1 tan x tan y 






Conversion - Illustrative
Problem
Prove that
sin cot-1 tan cos-1 x = x
Solution :
Step 1
Assume given inverse function as some
angle ( say  )
Let
y = sin cot-1 tan cos-1 x
And
cos-1 x = , cos  = x
Hence , y
= sin cot-1 tan 
Conversion - Illustrative
Problem
Prove that sin cot-1 tan cos-1 x = x
Step 2
y
= sin cot-1 tan 
Draw a right angled triangle satisfying the
angle. Find the third unknown side
1

1 x 2
cos  = x, tan  =
x
Hence , y
= sin cot-1
1 x2
x
1 x2
x
Conversion - Illustrative
Problem
Prove that sin cot-1 tan cos-1 x = x
y
Step 2
= sin
cot-1
1 x2
x
Draw a right angled triangle satisfying the
angle. Find the third unknown side
1
x

1 x 2
Let
cot-1
and
y
1  x 2 = , cot  =
x
= sin 
From the adjoining triangle , sin  = x
Hence y = x = R.H.S.
1 x2
x
Class Exercise - 3
Find the value of

1 1 
tan  2 tan

3



1 1 
Let  2 tan


3

 1
 tan 
2 3
1

2.  
2 tan
3
2 , tan  
As tan  

1
1  tan2
1
2
9
3
tan  
4
Solution :
Class Exercise - 4
Find the value of
1
1 5 
tan  cos

2
3 

Solution :
1
5
1 5
cos
   cos2 
2
3
3
5
1
1

cos
2

3 5
3
 tan2  

 tan2  
1  cos 2
5
3 5
1
3
2
3 5
3 5
 tan   
2
 tan  
2
4




Class Exercise - 6
Prove that


tan1  x   cot 1  x  1  tan1 x2  x  1
Class Exercise - 6
Prove that


tan1  x   cot 1  x  1  tan1 x2  x  1
Solution :
Let tan1 x   and cot 1  x  1  
1
 tan   x and cot    x  1  tan  
x 1
And L.H.S. of the given identity is
1
x 1
 tan      
 1 
1  x. 

 x  1
x
+
tan   tan 
as tan      
1  tan .tan 
Class Exercise - 6
Prove that


tan1  x   cot 1  x  1  tan1 x2  x  1
Solution : given identity is +
1
x 1
and tan      
 1 
1  x. 

 x  1
x
x2  x  1
 tan      
 x  1  1

 tan       x2  x  1
      tan1  x2  x  1
Class Exercise - 7
Solve the equation
1  5 
sin
1  12 
 x   sin
 

 x  2


Solution :
5
 12 
Let sin1     and sin1 


x
 x 
5
 12 
 sin     and sin   

x
x
 



 given equation is    
2
cos       0  cos .cos   sin .sin 
Class Exercise - 7
Solve the equation
5
 12  
sin1    sin1 
 2
x
x
 


Solution :
cos       0  cos .cos   sin .sin 
25  x2
5
As sin      cos  
x
x
144  x2
 12 
and sin   
 cos  

x
 x 
 25  x2   144  x2  5
   12 





.
  .

x
x

 
 x  x 

 

Class Exercise - 7
Solve the equation
5
 12  
sin1    sin1 
 2
x
x
 


Solution :
 25  x2

x


  144  x2
.
x
 
 
 5
    .  12 
 x  x 

 25  x2 . 144  x2  60
 x4  169x2  0



2
 25  x2 . 144  x2  60 
 x  0,  13 , x  0
Now If x   13 ,  ,   0, hence x  13
Class Exercise - 8
If sin-1 x + sin-1 (1- x) = cos-1x,
the value of x could be
(a) 1, 0
(b) 1,1/2
(c) 0,1/2
(d) 1, -1/2
Class Exercise - 8
If sin-1 x + sin-1 (1- x) = cos-1x,
the value of x could be
(a) 1, 0
(b) 1,1/2
(c) 0,1/2
(d) 1, -1/2
Solution :
Let sin1 x   and sin1 1  x   
 sin   x and sin   1  x 
and given equation is + = cos-1x  cos (+) = x
As sin   x  cos   1  x2
2
and sin   1  x   cos   1  1  x 

2x  x2
Class Exercise - 8
If sin-1 x + sin-1 (1- x) = cos-1x,
the value of x could be
(a) 1, 0
(b) 1,1/2
(c) 0,1/2
(d) 1, -1/2
Solution : cos (+) = x
sin   x , cos   1  x2 , sin   1  x  , cos  
2x  x2
  1  x2  .  2x  x2   x. 1  x   x

 

  1  x2  .  2x  x2   2x  x2

 

2
2
2
2
 1  x . 2x  x  2x  x

 2x  x2

 1  x   2x  x   0
2
2

 

Class Exercise - 8
If sin-1 x + sin-1 (1- x) = cos-1x,
the value of x could be
(a) 1, 0
(b) 1,1/2
Solution :

(c) 0,1/2
 2x  x2
(d) 1, -1/2
 1  x   2x  x   0
2
2
 x. 2  x  1  2x    0
1
 x  0, ,2
2
x  2 as x  sin 
1
 x  0,
2
Class Exercise - 10
If cos-1 x + cos-1 y + cos-1z = ,
Then prove that x2+y2+z2 = 1 - 2xyz
Solution :
Let cos1x  A , cos1 y  B and cos1 z  C
 cos A  x ,cosB  y and cosC  z
and given : A+B+C = 
Now, L.H.S. = cos2A + cos2B +cos2C
= cos2A + 1- sin2B +cos2C
= 1+(cos2A - sin2B) +cos2C
Class Exercise - 10
If cos-1 x + cos-1 y + cos-1z = ,
Then prove that x2+y2+z2 = 1 - 2xyz
Solution : Given : A+B+C = 
L.H.S. = 1+(cos2A - sin2B) +cos2C
= 1+ cos(A+B).cos(A–B) +cos2C
= 1+ cos( – C).cos(A–B) +cos2C
= 1+ cosC [– cos(A–B) +cosC ]
= 1+ cosC [– cos(A–B) – cos(A+B)]
Class Exercise - 10
If cos-1 x + cos-1 y + cos-1z = ,
Then prove that x2+y2+z2 = 1 - 2xyz
Solution : Given : A+B+C = 
L.H.S. = 1+ cosC [– cos(A–B) – cos(A+B)]
= 1– cosC [ cos(A–B) + cos(A+B)]
= 1– cosC [2cos A. cos B]
= 1– 2xyz = R.H.S.
Thank you
Related documents