Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mathematics Session Inverse Trigonometric Functions Session Objectives Session Objectives 1. Basic Concepts of inverse trigonometric functions • Definition • Domain and Range 2. Properties of Inverse Trigonmetric Function 3. Conversion of one form of Inverse Trig. Fn. to other Forms 4. Identities containing inverse trigonometric functions Basic Concepts - Definition Inverse of a Function : Function must be bijective Trigonometric functions are periodic. sin x is periodic with period equal to 2π Not Bijective Hence , inverse of sin x should not be valid ???? Basic Concepts - Definition However, trigonometric functions are bijective for particular value sets in the domain. sin x is bijective in [-π/2 , π/2 ] and in [π/2 ,3π/2 ] ……. for x R sin-1 x is valid in these value sets Inverse trigonometric function - principal value set Smallest Numerical Angle [-π/2 , π/2 ] Basic Concepts - Definition Inverse trigonometric functions inverse circular function. arc sin x sin-1x ( principal value ) Inverse Trigonometric function sin –1 x Domain of sin –1x ( value which x can take ) is [-1,1] Y 3/2 Range of sin /2 -1 1 -/2 X –1 x (values which sin–1x can take ) is [- /2, /2 ] Inverse Trigonometric function cos–1 x Domain of cos –1x ( value which x can take ) is [-1,1] Y /2 -1 1 - X Range of cos –1 x (values which cos–1x can take ) is [0, ] Inverse Trigonometric function tan–1 x Domain of tan –1x ( value which x can take ) is (- , ) /2 X -/2 - Range of tan –1 x (values which sec–1x can take ) is (-/2, /2) Inverse Trigonometric function sec–1 x Domain of sec –1x ( value which x can take ) is (- -1] U [1, ) Y /2 -1 Range of sec 1 X -/2 - –1 x (values which sec–1x can take ) is [0, ] excl. x = /2 Inverse Trigonometric function cot–1 x Domain of cot –1x ( value which x can take ) is (- , ) Y /2 X -/2 - Range of cot –1 x (values which cot–1x can take ) is (0, ) Inverse Trigonometric function Domain and Range Function Domain Range sin-1x [-1,1] [-/2, /2] cos-1x [-1,1] [0, ] Function Domain Range tan-1x (- , ) (-/2, /2) sec-1x (-, -1] U [1, ) [0, ] excl. /2 cosec-1x (-, -1] U [1, ) [-/2, /2] excl. 0 cot-1x (- , ) (0, ) Inverse Trigonometric function – Properties Always remember to keep the constraint of domain and range , while solving inverse trigonometric functions. sin( sin-1 x) = x and cos (cos-1 x) = x if tan( tan-1 x) = x x if x is in ( -, ) sin-1 ( sin x) = x if x is in [-/2, /2] x is in [-1,1] cos-1 ( cos x) = x if x is in [0, ] sec-1 ( sec x) = x if x is in [0, ] excl. x = /2 Inverse Trigonometric function – Properties sin-1 (-x) = -sin-1 (x) if x is in [-1,1] cos-1 (-x) = - cos-1x if x is in [-1,1] tan-1(-x) = - tan-1x if x is in ( -, ) cot-1(-x) = - cot-1x if x is in (-,) cosec-1(-x) = - cosec-1x if x is in (-,-1] U [1,) sec-1(-x) = - sec-1x if x is in (-,-1] U [1,) Inverse Trigonometric function – Properties Always remember to keep the constraint of domain and range , while solving inverse trigonometric functions. sin-1 (-x) = -sin-1 (x) if x is in [-1,1] Let y = sin-1(-x) ; constraint : sin y = - x y is in [-/2, /2] x = - sin y = sin ( -y ) sin-1(-x) = sin-1 ( sin (-y)) sin-1(-x) = -y sin-1(-x) = -sin-1 x Class Exercise - 1 Find the principal value of 2 sin 3 1 sin Solution : 2 Let sin1 sin 3 2 sin sin 3 sin 3 2 where , 2 2 3 Class Exercise - 2 Find the principal value of sin –1 ( sin 5 ) Solution : 5 Wrong Let y = sin-1(sin 5).Hence y is in [-/2,/2] Now , sin 5 = sin [(5/). ] = sin ( 1.59) = - sin (2 - 1.59) = sin ( 1.59 -2) sin 5 = sin ( 5 - 2 ) sin-1(sin 5) = sin-1 ( sin ( 5 - 2 )) =5- 2 in [-/2, /2] Other important properties sin-1 x+ cos-1 x = /2 ; if x is in [-1,1] 1 tan 1 x tan 1 y tan xy 1 xy If x > 0 , y > 0 and xy < 1 1 tan 1 tan 1 x tan 1 x tan 1 xy 1 xy If x<0,y<0 and xy < 1 y tan 1 y tan If x > 0 , y > 0 and xy > 1 xy 1 xy Class Exercise - 5 Find the value of 1 1 tan 1 1 2 tan 3 Solution : 1 1 Let tan1 and tan1 2 3 1 1 tan and tan and , , 2 3 2 2 1 1 2 3 Now tan 1 1 . 1 2 3 tan 1 Class Exercise - 5 Find the value of 1 1 tan1 tan1 2 3 Solution : tan 1 4 why 5 4 Class Exercise - 9 In triangle ABC if A = tan-12 and B = tan-1 3 , prove that C = 450 Solution : For triangle ABC , A+B+C = tan A 2; tanB 3 tan A B tan C tan A tanB tanC 1 tan A.tanB 1 tanC tanC 1 32 tanC 1 3.2 Inverse Trigonometric function – Conversion To convert one inverse function to other inverse function : 1. Assume given inverse function as some angle ( say ) 2. Draw a right angled triangle satisfying the angle. Find the third un known side 3. Find the trigonometric function from the triangle in step 2. Take its inverse and we will get = desired inverse function Conversion - Illustrative Problem The value of cot-1 3 + cosec-1 5 is (a) /3 (b) /2 ( c) /4 (d) none Step 1 Assume given inverse function as some angle ( say ) Let cot-1 3 + cosec-1 5 = x + y, Where x = cot-13 ; cot x = 3 and y = cosec-1 5 ; cosec y = 5 Conversion - Illustrative Problem The value of cot-1 3 + cosec-1 5 is (a) /3 (b) /2 ( c) /4 (d) none Step 2 Draw a right angled triangle satisfying the angle. Find the third unknown side 10 x 3 5 y 2 1 1 cot x = 3 , tan x = 1/3 cosec y = 5 , tan y = 1/2 Conversion - Illustrative Problem The value of cot-1 3 + cosec-1 5 is (a) /3 Step 3 (b) /2 ( c) /4 (d) none tan x = 1/3 ,tan y = 1/2 Find the trigonometric function from the triangle in step 2. Take its inverse and we will get = desired inverse function 1 1 3 2 tan( x y) 1 1 1 . 3 2 tan ( x+ y) = 1 x + y = /4 tan( x y) tan x tan y 1 tan x tan y Conversion - Illustrative Problem Prove that sin cot-1 tan cos-1 x = x Solution : Step 1 Assume given inverse function as some angle ( say ) Let y = sin cot-1 tan cos-1 x And cos-1 x = , cos = x Hence , y = sin cot-1 tan Conversion - Illustrative Problem Prove that sin cot-1 tan cos-1 x = x Step 2 y = sin cot-1 tan Draw a right angled triangle satisfying the angle. Find the third unknown side 1 1 x 2 cos = x, tan = x Hence , y = sin cot-1 1 x2 x 1 x2 x Conversion - Illustrative Problem Prove that sin cot-1 tan cos-1 x = x y Step 2 = sin cot-1 1 x2 x Draw a right angled triangle satisfying the angle. Find the third unknown side 1 x 1 x 2 Let cot-1 and y 1 x 2 = , cot = x = sin From the adjoining triangle , sin = x Hence y = x = R.H.S. 1 x2 x Class Exercise - 3 Find the value of 1 1 tan 2 tan 3 1 1 Let 2 tan 3 1 tan 2 3 1 2. 2 tan 3 2 , tan As tan 1 1 tan2 1 2 9 3 tan 4 Solution : Class Exercise - 4 Find the value of 1 1 5 tan cos 2 3 Solution : 1 5 1 5 cos cos2 2 3 3 5 1 1 cos 2 3 5 3 tan2 tan2 1 cos 2 5 3 5 1 3 2 3 5 3 5 tan 2 tan 2 4 Class Exercise - 6 Prove that tan1 x cot 1 x 1 tan1 x2 x 1 Class Exercise - 6 Prove that tan1 x cot 1 x 1 tan1 x2 x 1 Solution : Let tan1 x and cot 1 x 1 1 tan x and cot x 1 tan x 1 And L.H.S. of the given identity is 1 x 1 tan 1 1 x. x 1 x + tan tan as tan 1 tan .tan Class Exercise - 6 Prove that tan1 x cot 1 x 1 tan1 x2 x 1 Solution : given identity is + 1 x 1 and tan 1 1 x. x 1 x x2 x 1 tan x 1 1 tan x2 x 1 tan1 x2 x 1 Class Exercise - 7 Solve the equation 1 5 sin 1 12 x sin x 2 Solution : 5 12 Let sin1 and sin1 x x 5 12 sin and sin x x given equation is 2 cos 0 cos .cos sin .sin Class Exercise - 7 Solve the equation 5 12 sin1 sin1 2 x x Solution : cos 0 cos .cos sin .sin 25 x2 5 As sin cos x x 144 x2 12 and sin cos x x 25 x2 144 x2 5 12 . . x x x x Class Exercise - 7 Solve the equation 5 12 sin1 sin1 2 x x Solution : 25 x2 x 144 x2 . x 5 . 12 x x 25 x2 . 144 x2 60 x4 169x2 0 2 25 x2 . 144 x2 60 x 0, 13 , x 0 Now If x 13 , , 0, hence x 13 Class Exercise - 8 If sin-1 x + sin-1 (1- x) = cos-1x, the value of x could be (a) 1, 0 (b) 1,1/2 (c) 0,1/2 (d) 1, -1/2 Class Exercise - 8 If sin-1 x + sin-1 (1- x) = cos-1x, the value of x could be (a) 1, 0 (b) 1,1/2 (c) 0,1/2 (d) 1, -1/2 Solution : Let sin1 x and sin1 1 x sin x and sin 1 x and given equation is + = cos-1x cos (+) = x As sin x cos 1 x2 2 and sin 1 x cos 1 1 x 2x x2 Class Exercise - 8 If sin-1 x + sin-1 (1- x) = cos-1x, the value of x could be (a) 1, 0 (b) 1,1/2 (c) 0,1/2 (d) 1, -1/2 Solution : cos (+) = x sin x , cos 1 x2 , sin 1 x , cos 2x x2 1 x2 . 2x x2 x. 1 x x 1 x2 . 2x x2 2x x2 2 2 2 2 1 x . 2x x 2x x 2x x2 1 x 2x x 0 2 2 Class Exercise - 8 If sin-1 x + sin-1 (1- x) = cos-1x, the value of x could be (a) 1, 0 (b) 1,1/2 Solution : (c) 0,1/2 2x x2 (d) 1, -1/2 1 x 2x x 0 2 2 x. 2 x 1 2x 0 1 x 0, ,2 2 x 2 as x sin 1 x 0, 2 Class Exercise - 10 If cos-1 x + cos-1 y + cos-1z = , Then prove that x2+y2+z2 = 1 - 2xyz Solution : Let cos1x A , cos1 y B and cos1 z C cos A x ,cosB y and cosC z and given : A+B+C = Now, L.H.S. = cos2A + cos2B +cos2C = cos2A + 1- sin2B +cos2C = 1+(cos2A - sin2B) +cos2C Class Exercise - 10 If cos-1 x + cos-1 y + cos-1z = , Then prove that x2+y2+z2 = 1 - 2xyz Solution : Given : A+B+C = L.H.S. = 1+(cos2A - sin2B) +cos2C = 1+ cos(A+B).cos(A–B) +cos2C = 1+ cos( – C).cos(A–B) +cos2C = 1+ cosC [– cos(A–B) +cosC ] = 1+ cosC [– cos(A–B) – cos(A+B)] Class Exercise - 10 If cos-1 x + cos-1 y + cos-1z = , Then prove that x2+y2+z2 = 1 - 2xyz Solution : Given : A+B+C = L.H.S. = 1+ cosC [– cos(A–B) – cos(A+B)] = 1– cosC [ cos(A–B) + cos(A+B)] = 1– cosC [2cos A. cos B] = 1– 2xyz = R.H.S. Thank you