Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
10.3 Verify Trigonometric Identities Trigonometric Identities • Trigonometric Identity: a trigonometric equation that is true for all values of the variable for which both sides of the equation are defined. • There are 5 fundamental Trigonometric Identities. (See page 628 in your book.) 1+ tan 2 θ = sec2θ sin 1 1 2 2 cos cos 2 1 sin 2 1 2 2 cos cos 1 sin cos 2 cos 2 cos 2 2 1 sin cos 2 2 1 sin cos 2 2 1+ cot2 θ= csc2θ 1 1 1 2 tan sin 2 1 1 1 2 sin sin 2 cos 2 cos 2 1 1 2 sin sin 2 sin 2 cos 2 1 sin 2 sin 2 sin 2 sin 2 cos 2 1 Section 9.3 Page 572 4 π Given that sin q = 5 and 2 < q < π, find the values of the other five trigonometric functions of q . SOLUTION STEP 1 Find cos q . 2 2 4 ( ) + cos q = 5 2 cos q = 2 cos q = cosq = cosq = Write Pythagorean identity. 1 Substitute 4 for sin q. 5 2 2 4 4 1 – ( ) Subtract ( ) from each side. 5 5 9 Simplify. 25 +– 3 Take square roots of each side. 5 – 3 Because q is in Quadrant 5 II, cos q is negative. STEP 2 Find the values of the other four trigonometric functions of q using the known values of sin q and cos q. 4 5 4 sin q tan q = cos q = =– 3 –3 5 –3 5 3 cos q – cot q = sin q = = 4 4 5 1 5 csc q = sin1q = = 4 4 5 sec q = cos1 q = 5 1 – = 3 3 – 5 Find the values of the other five trigonometric functions of q. 1. cos q = 1 , 0 < q < π 6 2 SOLUTION Find sin q . STEP 1 sin 2q + cos 2q = 1 1 )2 1 6 = sin2 q = 1 – ( 1 )2 6 sin2 q = 35 36 sin 2q + ( sinq = sinq = Write Pythagorean identity. Substitute 1 for cos q . 6 2 1 Subtract ( ) from each side. 6 Simplify. 35 6 Take square roots of each side 35 6 Because q is in Quadrant I, sin q is positive. STEP 2 35 6 sin q tan q = cos q = = 35 1 6 1 6 6 35 csc q = sin1q = = 35 = 35 35 6 1 6 cos q 35 1 cot q = sin q = = = 35 35 35 6 sec q = cos1 q = 1 = 6 1 6 Find the values of the other five trigonometric functions of q. 2. sin q = –3 , π < q < 3π 7 2 SOLUTION STEP 1 Find cos q . sin 2q + cos 2q = 1 Write Pythagorean identity. ( – 3)2 + cos2 q = 1 Substitute – 3 for sin q . 7 7 2 2 – 3 ) cos q = 1 – ( –3 7 Subtract 7 from each side. 2 cos q = 40 Simplify. 49 cos q = +– 2 10 Take square roots of each side. 7 cosq = – 2 10 Because q is in Quadrant lII, 7 cos q 18 is negative. –2 10 2 10 cos q = 7 cot q = sin q = 3 3 – 7 1 –7 1 csc q = sin q = = 3 3 – 7 sec q = cos1 q = 1 – 2 10 7 7 10 = – 20 10.3 Assignment Day 1 Page 631, 3-9 all 10.3 Verify Trigonometric Identities, day 2 1 Simplify the expression csc q cot q + sin q . 2 2 1 csc q cot q + sin q = csc q cot q + csc q Reciprocal identity 2 = csc q (csc q – 1) + csc q Pythagorean identity 2 = csc q – csc q + csc q 3 3 = csc q Distributive property Simplify. Simplify the expression tan ( π – q ) sin q. 2 tan ( π – q ) sin q = cot q sin q Cofunction identity 2 cos q = ( sin q ) ( sin q ) Cotangent identity = cos q Simplify. Simplify the expression. 3. sin x cot x sec x cos x 1 sin x · sin x · cos x ANSWER 1 Substitute identity functions Simplify Simplify the expression. 4. tan x csc x sec x sin x 1 cos x · sin x Substitute identity functions Simplify 1 cos x ANSWER 1 Simplify the expression. 5. cos π – q –1 2 1 + sin (– q ) sin ( θ ) – 1 1 – sin ( θ ) Substitute Cofunction identity; Substitute Negative Angle identity sin ( θ ) – 1 – 1(sin ( θ ) – 1) ANSWER –1 Factor Simplify 10.3 Assignment Day 2 Page 631, 10-19 all 10.3 Verify Trigonometric Identities, day 3 Verifying Trigonometric Identities • When verifying an identity, begin with the expression on one side. • Use algebra and trigonometric properties to manipulate the expression until it is identical to the other side. 2 Verify the identity sec q2– 1 = sin q . sec q 2 sec q – 1 sec q – 1 = 2 2 2 sec q sec q sec q 2 2 Write as separate fractions. 2 1 =1–( ) sec q Simplify. = 1 – cos q Reciprocal identity = sin q Pythagorean identity 2 2 cos x Verify the identity sec x + tan x = . 1 – sin x 1 sec x + tan x = cos x + tan x Reciprocal identity sin x 1 = cos x + cos x Tangent identity 1 + sin x = cos x Add fractions. 1 + sin x 1 – sin x Multiply by 1 – sin x = cos x 1 – sin x 1 – sin x 1 – sin 2x = cos x (1 – sin x) Simplify numerator. cos2x = cos x (1 – sin x) Pythagorean identity cos x = 1 – sin x Simplify. Shadow Length A vertical gnomon (the part of a sundial that projects a shadow) has height h. The length s of the shadow cast by the gnomon when the angle of the sun above the horizon is q can be modeled by the equation below. Show that the equation is equivalent to s = h cot q . h sin (90° – q ) s= sin q SOLUTION Simplify the equation. h sin (90° – q ) s= sin q h sin ( π – q ) 2 = sin q Write original equation. Convert 90° to radians. cos q = hsin q Cofunction identity = h cot q Cotangent identity Verify the identity. 6. cot (– q ) = – cot q SOLUTION 1 cot (– q ) = tan (– θ ) Reciprocal identity 1 = –tan ( θ ) Negative angle identity = – cot θ Reciprocal identity Verify the identity. 7. csc2 x (1 – sin2 x) = cot2 x SOLUTION csc2 x (1 – sin2 x ) = csc2 x cos2x 1 = sin2 x cos2 x = cot2 x Pythagorean identity Reciprocal identity Tangent identity and cotangent identities Verify the identity. 8. cos x csc x tan x = 1 SOLUTION sin x cos x csc x tan x = cos x csc x cos x = cos x =1 1 sin x sin x cos x Tangent identity and cotangent identities Reciprocal identity Simplify Verify the Identity. 9. (tan2 x + 1)(cos2 x – 1) = – tan2 x SOLUTION (tan2 x + 1)(cos2 x – 1) = – sec2 x (–sin2x) 1 (–sin2x) = cos2 x = –tan2 x Pythagorean identity Reciprocal identity Tangent identity and cotangent identities 10.3 Assignment, day 3 Page 631, 25-32 all