Download 10.3 Verify Trigonometric Identities

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
10.3 Verify Trigonometric
Identities
Trigonometric Identities
• Trigonometric Identity: a trigonometric
equation that is true for all values of the
variable for which both sides of the equation
are defined.
• There are 5 fundamental Trigonometric
Identities. (See page 628 in your book.)
1+ tan 2 θ = sec2θ
sin 
1
1

2
2
cos  cos 
2
1
sin 2 
1


2
2
cos  cos 
1  sin   cos
2
cos 2 

cos 2 
2
1  sin   cos 
2
2
1  sin   cos 
2
2
1+ cot2 θ= csc2θ
1
1
1

2
tan  sin 2 
1
1
1

2
sin  sin 2 
cos 2 
cos 2 
1
1

2
sin  sin 2 
sin 2  cos 2 
1


sin 2  sin 2  sin 2 
sin 2   cos 2   1
Section 9.3
Page 572
4
π
Given that sin q = 5 and 2 < q < π, find the values of
the other five trigonometric functions of q .
SOLUTION
STEP 1
Find cos q .
2
2
4
( ) + cos q =
5
2
cos q =
2
cos q =
cosq =
cosq =
Write Pythagorean identity.
1
Substitute 4 for sin q.
5
2
2
4
4
1 – ( ) Subtract ( ) from each side.
5
5
9
Simplify.
25
+– 3
Take square roots of each side.
5
– 3
Because q is in Quadrant
5
II, cos q is negative.
STEP 2
Find the values of the other four
trigonometric functions of q using the
known values of sin q and cos q.
4
5
4
sin q
tan q = cos q =
=– 3
–3
5
–3
5
3
cos q
–
cot q = sin q =
= 4
4
5
1
5
csc q = sin1q =
= 4
4
5
sec q = cos1 q =
5
1
–
= 3
3
–
5
Find the values of the other five trigonometric
functions of q.
1. cos q = 1 , 0 < q < π
6
2
SOLUTION
Find sin q .
STEP 1
sin 2q + cos 2q = 1
1 )2
1
6 =
sin2 q = 1 – ( 1 )2
6
sin2 q = 35
36
sin 2q + (
sinq =
sinq =

Write Pythagorean identity.
Substitute 1 for cos q .
6
2
1
Subtract ( ) from each side.
6
Simplify.
35
6
Take square roots of each side
35
6
Because q is in Quadrant
I, sin q is positive.
STEP 2
35
6
sin q
tan q = cos q =
= 35
1
6
1
6
6 35
csc q = sin1q =
= 35 =
35
35
6
1
6
cos q
35
1
cot q = sin q =
=
=
35
35
35
6
sec q = cos1 q = 1 = 6
1
6
Find the values of the other five trigonometric functions of q.
2. sin q = –3 , π < q < 3π
7
2
SOLUTION
STEP 1
Find cos q .
sin 2q + cos 2q = 1
Write Pythagorean identity.
( – 3)2 + cos2 q = 1
Substitute – 3 for sin q .
7
7
2
2
–
3
)
cos q = 1 – (
–3
7
Subtract 7 from each side.
2
cos q = 40
Simplify.
49
cos q = +– 2 10 Take square roots of each side.
7
cosq = – 2 10 Because q is in Quadrant lII,
7
cos q 18 is negative.
–2 10
2 10
cos q = 7
cot q = sin q
= 3
3
–
7
1
–7
1
csc q = sin q =
= 3
3
–
7
sec q = cos1 q = 1
– 2 10
7
7 10
= – 20
10.3 Assignment Day 1
Page 631, 3-9 all
10.3 Verify Trigonometric
Identities, day 2
1
Simplify the expression csc q cot q + sin q .
2
2
1
csc q cot q + sin q = csc q cot q + csc q
Reciprocal identity
2
= csc q (csc q – 1) + csc q Pythagorean identity
2
= csc q – csc q + csc q
3
3
= csc q
Distributive property
Simplify.
Simplify the expression tan ( π – q ) sin q.
2
tan ( π – q ) sin q = cot q sin q
Cofunction identity
2
cos q
= ( sin q ) ( sin q ) Cotangent identity
= cos q
Simplify.
Simplify the expression.
3. sin x cot x sec x
cos x
1
sin x ·
sin x · cos x
ANSWER
1
Substitute identity functions
Simplify
Simplify the expression.
4.
tan x csc x
sec x
sin x
1
cos x · sin x
Substitute identity functions
Simplify
1
cos x
ANSWER
1
Simplify the expression.
5.
cos π – q –1
2
1 + sin (– q )
sin ( θ ) – 1
1 – sin ( θ )
Substitute Cofunction identity;
Substitute Negative Angle identity
sin ( θ ) – 1
– 1(sin ( θ ) – 1)
ANSWER
–1
Factor
Simplify
10.3 Assignment Day 2
Page 631, 10-19 all
10.3 Verify Trigonometric
Identities, day 3
Verifying Trigonometric Identities
• When verifying an identity, begin with the expression
on one side.
• Use algebra and trigonometric properties to
manipulate the expression until it is identical to the
other side.
2
Verify the identity sec q2– 1 = sin q .
sec q
2
sec q – 1
sec q – 1
=
2
2
2
sec q
sec q
sec q
2
2
Write as separate fractions.
2
1
=1–(
)
sec q
Simplify.
= 1 – cos q
Reciprocal identity
= sin q
Pythagorean identity
2
2
cos x
Verify the identity sec x + tan x =
.
1 – sin x
1
sec x + tan x = cos x + tan x
Reciprocal identity
sin x
1
= cos x + cos x
Tangent identity
1 + sin x
= cos x
Add fractions.
1 + sin x 1 – sin x Multiply by 1 – sin x
= cos x
1 – sin x
1 – sin x
1 – sin 2x
= cos x (1 – sin x)
Simplify numerator.
cos2x
= cos x (1 – sin x)
Pythagorean identity
cos x
= 1 – sin x
Simplify.
Shadow Length
A vertical gnomon (the part of
a sundial that projects a
shadow) has height h. The
length s of the shadow cast by
the gnomon when the angle
of the sun above the horizon
is q can be modeled by the
equation below. Show that the
equation is equivalent to
s = h cot q .
h sin (90° – q )
s=
sin q
SOLUTION
Simplify the equation.
h sin (90° – q )
s=
sin q
h sin ( π – q )
2
=
sin q
Write original equation.
Convert 90° to radians.
cos q
= hsin
q
Cofunction identity
= h cot q
Cotangent identity
Verify the identity.
6. cot (– q ) = – cot q
SOLUTION
1
cot (– q ) = tan (– θ )
Reciprocal identity
1
= –tan ( θ )
Negative angle identity
= – cot θ
Reciprocal identity
Verify the identity.
7. csc2 x (1 – sin2 x) = cot2 x
SOLUTION
csc2 x (1 – sin2 x ) = csc2 x cos2x
1
= sin2 x cos2 x
= cot2 x
Pythagorean identity
Reciprocal identity
Tangent identity and
cotangent identities
Verify the identity.
8. cos x csc x tan x = 1
SOLUTION
sin x
cos x csc x tan x = cos x csc x cos
x
= cos x
=1
1 sin x
sin x cos x
Tangent identity and
cotangent identities
Reciprocal identity
Simplify
Verify the Identity.
9. (tan2 x + 1)(cos2 x – 1) = – tan2 x
SOLUTION
(tan2 x + 1)(cos2 x – 1) = – sec2 x (–sin2x)
1 (–sin2x)
= cos2 x
= –tan2 x
Pythagorean identity
Reciprocal identity
Tangent identity
and cotangent
identities
10.3 Assignment, day 3
Page 631, 25-32 all
Related documents