Download Slide 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math III Accelerated
Chapter 14
Trigonometric Graphs,
Identities, and Equations
1
Warm Up 14.3
 Identify the trig function equivalent to the
given function.
1
1.
tan 
sin 
3.
cos 
1
2.
sec 
1
4.
csc 
2
14.3 Verify Trigonometric
Identities

Objective:
 Verify trigonometric identities.
3
Reciprocal Identities
 sin θ =
csc θ =
 cos θ =
sec θ =
 tan θ =
cot θ =
4
Trig Identities
 An identity is an equation that is true
for all real values in the domain of the
variable.
5
Quotient Identities
 tan θ =
 cot θ =
6
Pythagorean Identities
 sin2 θ + cos2 θ =
 1 + tan2 θ =
 1 + cot2 θ =
7
Cofunction Identities


sin     
2



csc    
2



cos    
2



sec    
2



tan     
2



cot     
2

8
Negative Angle Identities
Or, “Even/Odd Identities”
 sin (–θ) =
 cos (–θ) =
 tan (–θ) =
9
Example 1
3
3
 Given that cos    and    
,
4
2
find the values of the other 5 trig functions.
10
Checkpoints 1 & 2
 Find the values of the other five trig functions.
1

1. cos   , 0   
4
2
1 3
2. sin    ,
   2
3
2
11
Example 2
 Simplify the expression.
1


sin    
2

 cot 
12
Checkpoint 3
 Simplify the expression.
tan 
3
 sin   tan  csc   cos 
sec 
13
Example 3
 Verify the identity.
1
1  cos 
sec  
 tan  cot  
2
cos 
1  sin 
2
14
Checkpoint 4
 Verify the identity.
cos  x 
2
 sin x
2
cot x
2
15
Homework 14.3
 Practice 14.3
16
Related documents