Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Inverse of Transcendental Functions 1- Inverse of Trigonometric Functions 2- Inverse of Exponential Functions 3- Inverse of Hyperbolic Functions 1- Inverse of Trigonometric Functions Since the trigonometric functions are not one-to-one, so they don’t have inverse functions. However, if we restrict their domains, then we may obtain one-to-one functions that have the same values as the trigonometric functions and that have inverse over these restricted domains. For example, the function y sin x is not one –to-one on its natural domain R. However, when the domain is restricted to the interval –π/2 to π/2, it becomes one-to-one. y Graph of y sin x 1 y x 2 3 / 2 / 2 /2 1 1 x /2 / 2 1 1 y y sin x /2 x 1 1 / 2 3 / 2 2 Important Rules * 1 y sin x sin y x 1 * sin sin x x , if 1 x 1 * sin 1 sin x x , if 2 x 2 Example Find the domain of f x sin 1 x 2 1 Solution D : 1 x2 1 1 0 x2 2 D: 2 x 2 y Graph of y cos x 1 y 2 3 / 2 / 2 /2 3 / 2 1 1 /2 x 1 1 y cos x y /2 x 1 1 2 x Important Rules * 1 y cos x cos y x 1 * cos cos x x , if 1 x 1 * cos 1 cos x x , if 0 x y Graph of y tan x x 3 / 2 y /2 / 2 x 1 y tan x y /2 x / 2 / 2 /2 3 / 2 Important Rules * 1 y tan x tan y x 1 * tan tan x x , if x * tan 1 tan x x , tan 1 2 if 2 x 2 tan 1 2 Example 1 1 lim tan x2 x2 Evaluate Solution x2 1 x2 1 lim tan x2 x2 2 1 Notes sin x sin x 1 cos x cos x 1 tan x tan x 1 sin 1 1/ 2 / 6 1 1 1 sin x 1 1 csc x sin x 1 1 sec x cos x 1 1 cot x tan x cos x tan x cos tan 1 1 / 4 1 3/2 /6 Important Rules * * * 1 1 1/ x 1 1 1/ x 1 1 1/ x csc x sin sec x cos cot x tan 1 Proof csc x sin 1 1/ x y csc x 1 1 1 sin y x csc y x csc y sin 1/ x sin sin y 1 1 y csc x sin 1/ x 1 1 Example Evaluate the given inverse function i ) sec 1 3 ii ) cot 1 2.474 Solution i ) sec 1 3 cos 1 1 1.910633236 3 1 ii ) cot 2.474 tan 0.3840267299 2.474 1 1 2- Inverse Exponential Functions x Every exponential function of the form a is a one-to-one function. It therefore has an inverse function, which is called the logarithmic function with base a and is denoted by log a x . y ax log a x 1 1 Domain: (0, ) x Range: R (, ) The Natural Logarithmic Function The logarithm with base e is called the natural logarithm and has a special notation loge x ln x y ln x y e x y 1 x 1 Domaim : (0, ) Rnge : R Basic Properties of Natural Logarithmic Function ln e x x e lnx y ln x ln y ln x x lnx / y ln x ln y r ln x ln x ln 0 r ln Example Solve the following equations for x a) e 53 x 10 5 3x ln 10 e e5 ln x 2 1 x 2 1 e 5 x e 1 2 1 x 5 ln10 0.8991 3 b ) ln x 1 5 Solution ln e 53x ln 10 2 5 x e 1 12.141382. 5 Example Sketch the function f x ln x 2 1 Solution y y x y x=2 x x 3- Inverse Hyperbolic Functions The hyperbolic functions sinh x is one-to-one functions 1 and so they have inverse functions denoted by sinh x 1) sinh 1 x ln x x 2 1 , 1 x 2) cosh x ln x x 1 , x 1 1 x 3) tanh x ln , 1 x 1 2 1 x 1 1 sinh x ln x x 1 , Proof (1) 2 e e x sinh y x 2 y y sinh x 1 x R y e e 2x e 2x e 0 y e y 2 y 2 xe 1 0 y 2x 4x 4 e 2 2 y y y e x x 1 y 2 y ln x x 1 2 Proof (3) tanh y tanh x 1 1 1 x x ln , 1 x x tanh y 1 x 1 x e e e y e y x e y e e 1 x e 1 x y y e y 1 x 1 x y e y xe y y y e y e y e y xe 1 x 1 x e y 2 y ln 1 x 1 x y Important Rules 1 sec h x cosh 1 csc h x sinh 1 1 1 coth x tanh 1 / x 1 / x 1 1 / x