Download Slide 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Inverse of Transcendental
Functions
1- Inverse of Trigonometric Functions
2- Inverse of Exponential Functions
3- Inverse of Hyperbolic Functions
1- Inverse of Trigonometric Functions
Since the trigonometric functions are not one-to-one, so they
don’t have inverse functions. However, if we restrict their
domains, then we may obtain one-to-one functions that have
the same values as the trigonometric functions and that have
inverse over these restricted domains.
For example, the function y  sin x is not one –to-one on
its natural domain R. However, when the domain is
restricted to the interval –π/2 to π/2, it becomes one-to-one.
y
Graph of y  sin x
1
y
x
2 3 / 2   / 2
 /2

1
1
x
 /2
 / 2
1
1
y
y  sin x
 /2
x
1
1
 / 2
3 / 2
2
Important Rules
*
1
y  sin x  sin y  x

1

* sin sin x  x , if  1  x  1
* sin
1
sin x   x ,
if 

2
x 

2
Example
Find the domain of


f  x   sin 1 x 2  1
Solution
D :  1  x2  1  1
 0  x2  2
D:  2  x  2
y
Graph of y  cos x
1
y
2 3 / 2   / 2
 /2

3 / 2
1
1
 /2

x
1
1
y  cos x
y

 /2
x
1
1
2
x
Important Rules
*
1
y  cos x  cos y  x

1

* cos cos x  x , if  1  x  1
* cos
1
 cos x   x ,
if 0  x  
y
Graph of y  tan x
x
3 / 2
y
 /2
 / 2
x
1
y  tan x
y
 /2
x
 / 2

 / 2
 /2

3 / 2
Important Rules
*
1
y  tan x  tan y  x

1

* tan tan x  x , if    x  
* tan
1
 tan x   x ,
tan   
1

2
if 

2
x 

2
tan    
1

2
Example
1 
1 
lim tan 

x2
 x2
Evaluate
Solution
x2

1


x2
1  
lim tan 


x2
 x2 2
1 
Notes
sin x   sin x 
1
cos x   cos x 
1
tan x   tan x 
1
sin
1
1/ 2   / 6
1
1
1
 sin x 
1
1

 csc x
sin x
1
1

 sec x
cos x
1
1

 cot x
tan x
 cos x 
 tan x 
cos
tan 1 1   / 4
1


3/2 
 /6
Important Rules
*
*
*
1
1
1/ x 
1
1
1/ x 
1
1
1/ x 
csc x  sin
sec x  cos
cot x  tan
1
Proof
csc x  sin
1
1/ x 
y  csc x
1
1
1
 
 sin y
x csc y
 x  csc y
 sin 1/ x   sin sin y 
1
1
y  csc x  sin 1/ x 
1
1
Example
Evaluate the given inverse function
i ) sec
1
 3
ii ) cot
1
 2.474
Solution
i ) sec
1
 3  cos
1  1 
   1.910633236
 3
1 
ii ) cot  2.474   tan 
  0.3840267299
 2.474 
1
1 
2- Inverse Exponential Functions
x
Every exponential function of the form a is a one-to-one
function. It therefore has an inverse function, which is
called the logarithmic function with base a and is denoted
by log a x .
y
ax
log a x
1
1
Domain:
(0, )
x
Range:
R  (, )
The Natural Logarithmic Function
The logarithm with base e is called the natural logarithm and
has a special notation
loge x  ln x
y  ln x
y e x
y
1
x
1
Domaim : (0, )
Rnge : R
Basic Properties of Natural Logarithmic Function
ln e  x
x
e
lnx y   ln x  ln y
ln x
x
lnx / y   ln x  ln y
   r ln x
ln x

ln 0  
r
ln  
Example
Solve the following equations for x
a) e
53 x
 10


5  3x  ln 10 
e
 e5

ln x 2 1
x
2

1  e
5
x  e 1
2
1
x   5  ln10   0.8991
3

b ) ln x  1  5
Solution
ln e 53x  ln 10 

2
5
x  e  1  12.141382.
5
Example
Sketch the function
f  x   ln  x  2   1
Solution
y
y
x
y
x=2
x
x
3- Inverse Hyperbolic Functions
The hyperbolic functions sinh x is one-to-one functions
1
and so they have inverse functions denoted by sinh x


1) sinh 1 x  ln x  x 2  1 ,
1

x 

2) cosh x  ln x  x  1 , x  1
1 x
3) tanh x  ln
,
1 x
1
2
1  x  1
1


sinh x  ln x  x  1 ,
Proof (1)
2
e e
 x  sinh y  x 
2
y
y  sinh x
1
x R
y
 e  e  2x  e  2x  e  0
y
e 
y 2
y
 2 xe   1  0
y
2x  4x  4
e  
2
2
y
y
y
e  x  x 1
y


2
y  ln  x  x  1 


2
Proof (3)
tanh
y  tanh x
1
1
1 x
x  ln
,
1 x
 x  tanh y
1 x 1
x 
e
e
e
y
e
y

x e
y
e
 e 1  x   e 1  x 
y
y
 
 e
y
1  x

1  x 
y

e
y
 xe
y
y
y
e
y
e
y
e
y
 xe
  1  x   1  x 
 e
y
2

y  ln 


1  x  
1  x  
y
Important Rules
1
sec h x  cosh
1
csc h x  sinh
1
1
1
coth x  tanh
1 / x 
1 / x 
1
1 / x 
Related documents