Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 6 – Graphs and Inverses of the Trigonometric Functions 6.1 Graphs of Trigonometric Functions First as a class let’s graph y = sin x and y = cos x. y = tan x A function is periodic if for some number alpha, f ( x) f ( x ) for each x in domain of f. The least positive value of alpha for which f ( x) f ( x ) is the period of the function. Example: Use the graph of the cosine function to find the value of theta for which cos 1 Example: Graph the sine curve in the interval 540 0 6.2 Amplitude, Period, and Phase Shift What is and amplitude? Where can we find it in a function? And what does it tell us about a function? Ex: State the amplitude of the function y 3cos . Graph y 3cos and y cos on the same set of axes. Compare the graphs. What is the period of a function? How can it help us to graph a function? What affect does the period have on the function? Example: State the period of the function y 4sin . Then graph the function and y sin on the same set of axes. What is a phase shift? How does it affect the graphs? Example: State the phase shift of the function y tan 45 . Then graph the function and y = tan x on the same axes. Example: Find the possible equations of a cosine function with amplitude 3, period 90 degrees, and phase shift 45 degrees. 6.3 Graphing Trigonometric Functions Create rules for graphing and try some different examples. 6.4 Inverse Trigonometric Functions Find all positive values of x for which cos x sin(arcsin 0.4212) 2 cos 2 3 2 1 5 tan sin 13 6.5 Principal Values of the Inverse Trigonometric Functions 1 arccos 2 1 sin sin 1 1 cos 1 2 sin 1 tan 4 5 5 sin arcsin arc cot 12 3