Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Refresher: Special Right Triangles 30-60-90 45-45-90 In a triangle 30°-60°-90° , the hypotenuse is twice as long as the shorter leg, and the longer leg is 3 times as long as the shorter leg. In a triangle 45°-45°-90° , the hypotenuse is 2 times as long as a leg. Hypotenuse Longer 30° Leg X 3 2X 45° Leg X Hypotenuse X 2 45° 60° X Shorter Leg Leg X 30º 45º 60º 60º 45º 30º The Trigonometric Functions we will be looking at SINE COSINE TANGENT The Trigonometric Functions SINE COSINE TANGENT Greek Letter q Prounounced “theta” Represents an unknown angle Opp Leg Sin Hyp Adj Leg Cos Hyp Opp Leg Tan Adj Leg hypotenuse q adjacent opposite opposite We need a way to remember all of these ratios… Some Old Hippie Came A Hoppin’ Through Our Old Hippie Apartment SOHCAHTOA Old Hippie Sin Opp Hyp Cos Adj Hyp Tan Opp Adj Example: sin (45º) Sin = 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 Sin = 𝑦 1 2 Sin = Sin = 1 2 2 2 Example: cos (- 7𝜋 ) 6 Cos = Cos = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 𝑥 1 Cos = − 32 1 Cos = − 3 2 Find sin θ and cos θ θ=− θ = 510º Sin (225º) = 1 2 Cos (225º) = − 𝝅 𝟔 Sin (− 3 2 Cos 𝟗𝝅 ) 𝟒 =− 𝟗𝝅 (− ) 𝟒 = 1 2 3 2 Example: tan (-240º) Tan = 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 Tan = 𝑦 𝑥 3 Tan= 2 −1 2 Tan = Tan = 3 2 ×− 2 3 − 2 Tan = − 3 1 Tan = − 3 2 1 Example: tan 13𝜋 ( ) 4 Tan = 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 Tan = Tan= 𝑦 𝑥 − 22 − 22 Tan = − 2 2 Tan = 1 × −2 2 Find sin θ, cos θ, and tan θ θ = 225º 2 Sin (225º) = − 2 2 Cos (225º) = − 2 Tan (225º) = 1 θ=− 𝟗𝝅 𝟒 𝟗𝝅 Sin (− ) = − 𝟒 𝟗𝝅 Cos (− ) = 𝟒 𝟗𝝅 Tan (− ) = 𝟒 2 2 2 2 -1