Download L01

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
REVIEW
OF
MATHEMATICS
Review of Vectors Analysis


T
T
a

[
a
,
a
,
a
]
,
b

[
b
,
b
,
b
]
Given
x
y
z
x
y
z
  T 
 
Dot product: a  b  a b  axbx  a y by  az bz  a b cos( )
 is the angle between the two vectors.

a
 [1,3,5]T   
Example:
a  b   1(2)  3(4)  5(6)  44

T
b  [2,4,6] 

a  35 
44 
1 



cos



b  56 
 35 56 

 
2
2
2
a

a

a

a

a

a
Magnitude of vector:
x
y
z
Example: a  [1,2,3]T  a  12  22  32  14
Review of Vectors Analysis


Vectors a and b are said to be perpendicular or
orthogonal if  
a b  0
Example:


T
T
a  1 0 0 ,
b  0 1 0
 
 
a b  0  a  b
Note that the above vectors represent the unit vectors for the Xaxis and Y-axis. They are definitely perpendicular or orthogonal.
Review of Vectors Analysis
 
Cross product: a  b  a y bz  a z by  a z bx  a x bz 
 eˆ1
 

a  b  det a x
 bx
 

a b  a b
 is the angle between the two vectors.
eˆ2
ay
by
a b
x y
 a y bx 
eˆ3 

az 
bz 
sin( )
Example:

 
T
a  [1,3,5]  a  b   3(6)  5(4) eˆ1  5(2)  1(6) eˆ2  1(4)  3(2) eˆ3

T
T
b  [2,4,6] 
 (2) (4)  2

a  35 


24 
1 
b  56   sin 

 35 56 
 

a  b  24 
Review of Vectors Analysis


The cross product of a and b provides
 us with a vector

which is perpendicular to both a and b


T
T
Example:
a  1 0 0 ,
b  0 1 0
 iˆ ˆj kˆ 
0 
 


a  b  det 1 0 0   0iˆ  (0) ˆj  (1)kˆ  0
 
0 1 0 
1


Note that the above vectors represent the unit vectors for the Xaxis and Y-axis respectively. Their cross product is the unit
vector for the Z-axis, which is definitely perpendicular to both
the X-axis and the Y-axis.
Review of Vectors Analysis
Note that the unit vectors for the right handed Cartesian reference
frame are orthonormal basis vectors, i.e.
iˆ  ˆj  kˆ,
ˆj  kˆ  iˆ
kˆ  iˆ  ˆj
iˆ  ˆj  ˆj  kˆ  kˆ  iˆ  0
iˆ  ˆj  kˆ  1

   
a  b  a b cos( )  0      2n ,
n  1,2,
2
 
 
a  b  a b sin( )  0    2n ,
n  0,1,2,
Review of Vectors Analysis
        
Vector triple product: a  b  c   b a  c   c a  b 
Example:

T
a  0 1 0 
0   0 

     
T 
b  1 0 0 a  b  c   1   1  0 0 0
   

T
c  0 0 1 
0  0 
  
T
b a  c   1 0 0 (0  0  0)  0 0 0
  
T
c a  b   0 0 1 (0  0  0)  0 0 0
Review of Vectors Analysis
    
  
Scalar triple product: ab c   a  b  c   a  b  c
a x

 det  bx
 c x
ay
by
cy
az 

bz 
c z 
Example:

T
a  0 1 0 
0 1 0 


T  
b  1 0 0 ab c   det 1 0 0  0  1(1  0)  0  1



T
c  0 0 1 
0 0 1
  
T
T
a  b  c   0 1 0  0  1 0  1
  
a  b  c  0 0  1T  0 0 1T  1
Review of Vectors Analysis
d 
a  a x
dt

T
a

[
a
,
a
,
a
]
Given
x
y
z
Example:
Given
T
z
T

2
a  t  t 2t  1
d 
T
a  2t  1 2
dt
d 
 (a )   a x
dt

a  [ax , a y , a z ]T
where  is a any constant
Example:
a y
a 

a  t 2  t
d 
3a  32t
dt
2t  1
T
 1 2
T
a y
a z 
T
Review of Vectors Analysis


T
T
a

[
a
,
a
,
a
]
,
b

[
b
,
b
,
b
]
x
y
z
x
y
z
Given
d      
a  b   a  b  a  b
dt
Example:
2

 2
2
t
2
t

3
t




T

2
a  t  t 2t  1  d     
   t  0 


a

b


1

1

T 
  
  
 
b  2t  3 1  t   dt
 2    t  2t  1  1
d  
a  b   {(4t 2  6t )  1  (2t )}  {2t 2  2t  1}  6t 2  10t  2
dt
Review of Vectors Analysis


T
T
a

[
a
,
a
,
a
]
,
b

[
b
,
b
,
b
]
Given
x
y
z
x
y
z
d      
a  b   a  b  a  b
dt
Example:
 5t 2 
10t
sin( t )

 

cos(t )

2
3 T

 d 
a  5t t  t
 1    cos(t )   t    sin( t ) 
a

b



T

 
   

b  sin( t )  cos(t ) 0  dt
2
3


 3t   0   t   0 
ˆj
ˆj
 iˆ
 iˆ
kˆ 
kˆ 
d  




a  b  det  10t
1
 3t 2   det  5t 2
t
 t3 
dt
sin( t )  cos(t )
cos(t ) sin( t ) 0 
0 




 

 3t 2 cos(t )
t 3 sin( t )

d 

 

3
a b  
 3t 2 sin( t )


t
cos(
t
)
 

dt
2
 {10t cos(t )  sin( t )} 5t sin( t )  t cos(t )

 



t 3 sin( t )  3t 2 cos(t )

d 


a  b    {t 3 cos(t )  3t 2 sin( t )} 
dt
5t 2 sin( t )  11t cos(t )  sin( t )












Review of Vectors Analysis


d 
Ab   A b  Ab
dt
where A is a matrix of dimension comparable to the vector
being multiplied

Given b  [bx , by , bz ]T
Example:


b  t2

d 
T
t 1  b  2t 1 0
dt
2t 1 0 
 2 0 0
d
A   0 t 3   A  0 1 0

 dt


 2 0 3t 
0 0 3
2
2
2
2
2 0 0 t  2t 1 0  2t  2t  4t  1 6t  1
d  
 
  
 

Ab  0 1 0  t    0 t 3   1    t    t    2t 



 
dt
0 0 3  1   2 0 3t   0   3   4t   4t  3 
 
T
Eigenvalues and Eigenvectors

Let A be an nn matrix. If there exists a  and a nonzero n1 vector x
such that


Ax  x

then  is called an eigenvalue of A and x is called an eigenvector
of A corresponding to the eigenvalue 
Let In be a nn identity matrix. The eigenvalues of nn matrix A
can be obtained from:
det( A  I n )  0
A nn matrix A has at least one and at most “n” distinct eigenvalues
Example 1: Eigenvalues and Eigenvectors
Find the eigenvalues of
Solution:
1 2 3
A  0  4 2 


0 0 7
2
3 
1 2 3
1 0 0 1  
A  I n  0  4 2   0 1 0   0
4
2 



 

0
7   
0 0 7 
0 0 1  0
2
3 
1  
det( A  I n )  0  det  0
4
2 0


0
7   
 0
1    4   7     0
  1,  4, 7
Example 2: Eigenvalues and Eigenvectors
What is the eigenvector of
 4  36 33 at =1?
1 
A
48
9
4

49 
 9 32 36



Ax  x   A  I x  0
  4  36 33 1 0
1
   48
9
4   10 1
 
49 
  9 32 36 0 0
 36
(4  49)
1
  48
(9  49)

49
32
  9
0   x1  0
0   x2   0
    
1   x3  0
33   x1  0
  x   0 
4
 2   
(36  49)  x3  0
 45  36 33   x1  0
1
  48  40 4   x2   0
   
49 
32  13  x3  0
  9
Example 2: Eigenvalues and Eigenvectors
 45 x1  36 x2  33x3  0
48 x1  40 x2  4 x3  0
 9 x1  32 x2  13x3  0
Multiply 3rd eqn by -5 and add it to 1st eqn to eliminate x1
 45 x1  36 x2  33x3  0
45 x1  160 x2  65 x3  0
  196 x2  98 x3  0
x3
 2
x2
Example 2: Eigenvalues and Eigenvectors
 45 x1  36 x2  33x3  0
48 x1  40 x2  4 x3  0
 9 x1  32 x2  13x3  0
Divide 2nd eqn by x2 and simplify using the known result:
48
x
x1
 40  4 3  0
x2
x2
x1
48  40  4(2)  0
x2
x1 32 2
 

x2 48 3
Example 2: Eigenvalues and Eigenvectors
Story so far:
x3
 2,
x2

x  x1
x2
x1 2

x2 3
x3 
T
2

 x2  1 2
3

T
We can obtain a normalized eigenvector using:
 2 1 2
x

2

x

3

xn   
2
x
2
x2    12  2 2
 3
T
1
 3 2
T

xn   1 2  2 3 6
7 3
7

Trigonometric Functions
sin 2 ( )  cos 2 ( )  1
sin(  )   sin( )
cos(  )  cos( )
tan(  )   tan( )
sin(1   2 )  sin(1 ) cos( 2 )  cos(1 ) sin( 2 )
cos(1   2 )  cos(1 ) cos( 2 )  sin(1 ) sin( 2 )
tan(1 )  tan( 2 )
tan(1   2 ) 
1  tan(1 ) tan( 2 )
Trigonometric Functions
sin( )
tan( ) 
cos( )
d
sin( )  cos( )
d
d
cos( )   sin( )
d
d
d
sin( )  cos( )   cos( )
dt
dt
d
d
cos( )   sin( )    sin( )
dt
dt
 sin( )d   cos( )
 cos( )d  sin( )
Related documents