Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
9.3 Further Identities • Double-Number Identities – E.g. cos 2A = cos(A + A) = cos A cos A – sin A sin A = cos² A – sin² A – Other forms for cos 2A are obtained by substituting either cos² A = 1 – sin² A or sin² A = 1 – cos² A to get cos 2A = 1 – 2 sin² A or cos 2A = 2 cos² A – 1. Copyright © 2011 Pearson Education, Inc. Slide 9.3-1 9.3 Double-Number Identities Double-Number Identities cos 2 A cos A sin A cos 2 A 1 2 sin A cos 2 A 2 cos A 1 sin 2 A 2 sin A cos A 2 2 2 2 2 tan A tan 2 A 1 tan 2 A Copyright © 2011 Pearson Education, Inc. Slide 9.3-2 9.3 Finding Function Values of 2 Example Given cos 53 and sin < 0, find sin 2, cos 2, and tan 2. Solution To find sin 2, we must find sin . sin 2 cos 2 1 2 3 4 sin 1 sin 5 5 sin 2 2 sin cos 2 Choose the negative square root since sin < 0. 4 3 24 sin 2 2 25 5 5 Copyright © 2011 Pearson Education, Inc. Slide 9.3-3 9.3 Finding Function Values of 2 cos 2 cos sin 2 2 2 2 3 4 7 25 5 5 2 tan sin 54 4 tan 2 , where tan 3 2 1 tan cos 3 5 2 43 24 or 2 7 1 43 sin 2 24 24 25 tan 2 7 cos 2 25 7 Copyright © 2011 Pearson Education, Inc. Slide 9.3-4 9.3 Simplifying Expressions Using Double-Number Identities Example Simplify each expression. (a) cos² 7x – sin² 7x (b) sin 15° cos 15° Solution (a) cos 2A = cos² A – sin² A. Substituting 7x in for A gives cos² 7x – sin² 7x = cos 2(7x) = cos 14x. (b) Apply sin 2A = 2 sin A cos A directly. 1 sin 15 cos 15 (2) sin 15 cos15 2 1 1 1 sin( 2 15 ) sin 30 2 2 4 Copyright © 2011 Pearson Education, Inc. Slide 9.3-5 9.3 Product-to-Sum Identities • Product-to-sum identities are used in calculus to find integrals of functions that are products of trigonometric functions. • Adding identities for cos(A + B) and cos(A – B) gives cos( A B) cos A cos B sin A sin B cos( A B) cos A cos B sin A sin B cos( A B) cos( A B) 2 cos A cos B 1 cos A cos B [cos( A B) cos( A B)]. 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-6 9.3 Product-to-Sum Identities • Similarly, subtracting and adding the sum and difference identities of sine and cosine, we may derive the identities in the following table. Product-to-Sum Identities cos A cos B 12 [cos( A B) cos( A B)] sin A sin B 12 [cos( A B) cos( A B)] sin A cos B 12 [sin( A B) sin( A B)] cos A sin B 12 [sin( A B) sin( A B)] Copyright © 2011 Pearson Education, Inc. Slide 9.3-7 9.3 Using a Product-to-Sum Identity Example Rewrite cos 2 sin as either the sum or difference of two functions. Solution By the identity for cos A sin A, with 2 = A and = B, 1 cos 2 sin [sin( 2 ) sin( 2 )] 2 1 1 sin 3 sin . 2 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-8 9.3 Sum-to-Product Identities • From the previous identities, we can derive another group of identities that are used to rewrite sums of trigonometric functions as products. Sum-to-Product Identities sin A sin B 2 sin A2 B cos A2 B sin A sin B 2 cos A2 B sin A2 B cos A cos B 2 cos A2 B cos A2 B cos A cos B 2 sin A2 B sin A2 B Copyright © 2011 Pearson Education, Inc. Slide 9.3-9 9.3 Using a Sum-to-Product Identity Example Write sin 2t – sin 4t as a product of two functions. Solution Use the identity for sin A – sin B, with 2t = A and 4t = B. 2t 4t 2t 4t sin 2t sin 4t 2cos sin 2 2 6t 2t 2cos sin 2 2 2cos3t sin( t ) 2cos3t sin t Copyright © 2011 Pearson Education, Inc. Slide 9.3-10 9.3 Half-Number Identities • Half-number or half-angle identities for sine and cosine are used in calculus when eliminating the xy-term from an equation of the form Ax² + Bxy + Cy² + Dx + Ey + F = 0, so the type of conic it represents can be determined. • From the alternative forms of the identity for cos 2A, we can derive three additional identities, e.g. sin A . 2 cos 2 x 1 2 sin x 2 2 sin x 1 cos 2 x 2 A 1cos 2 x sin x Let 2 x A so that x . 2 2 A 1cos A Choose the sign ± depending on sin the quadrant of the angle A/2. 2 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-11 9.3 Half-Number Identities Half-Number Identities A 1 cos A cos 2 2 A 1 cos A sin 2 2 A 1 cos A A sin A tan tan 2 1 cos A 2 1 cos A A 1 cos A tan 2 sin A Copyright © 2011 Pearson Education, Inc. Slide 9.3-12 9.3 Using a Half-Number Identity to Find an Exact Value Example Find the exact value of cos Solution cos 12 . cos 6 12 2 1 cos 6 2 3 3 1 2 1 2 3 2 2 2 22 2 Copyright © 2011 Pearson Education, Inc. Slide 9.3-13 9.3 Finding Function Values of x/2 Example Given cos x 23 , with cos 2x , sin 2x , and tan 2x . 3 2 x 2 , find Solution The half-angle terminates in quadrant II since 32 x 2 34 2x . x 1 23 1 6 sin 2 2 6 6 x 1 23 5 30 cos 2 2 6 6 6 x sin 2x 5 6 tan 30 x 2 cos 2 6 5 Copyright © 2011 Pearson Education, Inc. Slide 9.3-14 9.3 Simplifying Expressions Using Half-Number Identities 1 cos 12 x Example Simplify the expression . 2 Solution This matches the part of the identity for cos A/2. Replace A with 12x to get 1 cos12 x 12 x cos 2 2 cos 6 x. Copyright © 2011 Pearson Education, Inc. Slide 9.3-15