Download Chap. 3 - Sun Yat

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 3. Elementary Functions
Weiqi Luo (骆伟祺)
School of Software
Sun Yat-Sen University
Email:[email protected] Office:# A313
Chapter 3: Elementary Functions








The Exponential Functions
The Logarithmic Function
Branches and Derivatives of Logarithms
Some Identities Involving Logarithms
Complex Exponents
Trigonometric Function
Hyperbolic Functions
Inverse Trigonometric and Hyperbolic Functions
2
School of Software
29. The Exponential Function
 The Exponential Function
e  e e , z  x  iy
z
x iy
Single-Valued
According to the Euler’ Formula
e  cos y  i sin y
iy
u(x,y)
v(x,y)
e  e cos y  ie sin y
z
x
x
Note that here when x=1/n (n=2,3…) & y=0, e1/n denotes the positive nth root of e.
3
School of Software
29. The Exponential Function
 Properties
e e e
z1
Let
z2
z1  z2
z1  x1  iy1; z2  x2 +iy2
Real value:
ex1 +iy1 ex2 +iy2  (ex1 eiy1 )(ex2 eiy2 )
 (e e )(e e )
x1 x 2
e
iy1 iy2
e x1 e x 2 =e x1  x 2
Refer to pp. 18
eiy1 eiy2  ei(y1  y2 )
x1  x 2 i(y1  y2 )
e
z1  z2  ( x1  x2 )+i( y1  y2 )
 e z1 +z2
4
School of Software
29. The Exponential Function
 Properties
e
z1  z2
e e
z2
e z1
z1  z2

e
z2
z2
e
e 0
z1
Refer to Example 1 in Sec 22, (pp.68), we have that
d z
e  ez
dz
everywhere in the z plane
which means that the function ez is entire.
5
School of Software
29. The Exponential Function
 Properties
ez  0
e  e e  re
z
x iy
i
For any complex number z
r  ex &  y
r | e z | e x  0 & arg(e z )  y  2n (n  0, 1, 2,...)
e
z  2 i
z 2 i
e e
e z 2 i  e z , e2 i  cos 2  i sin 2  1
which means that the function ez is periodic, with a pure imaginary period of 2πi
6
School of Software
29. The Exponential Function
 Properties
e 0
x
For any real value x
while ez can be a negative value, for instance
ei  cos   i sin   1
7
School of Software
29. The Exponential Function
 Example
In order to find numbers z=x+iy such that
e  1 i
z
ez  exeiy  2ei /4
i /4
e  2 &e  e
x
iy
1

ln 2 & y   2n , (n  0, 1, 2,...)
2
4
1
1
z  ln 2  i (  2n), (n  0, 1, 2,...)
2
4
x
8
School of Software
29. Homework
pp. 92-93
Ex. 1, Ex. 6, Ex. 8
9
School of Software
30. The Logarithmic Function
 The Logarithmic Function
log z  ln r  i (  2n ), (n  0, 1, 2,...)
z  rei  0
Please note that the Logarithmic Function is the multiple-valued function.
ln r  i
ln r  i(  2 )
ln r  i(  2 )
z  rei
One to infinite values
…
It is easy to verify that
elog z  eln r i (  2 n )  eln r ei (  2 n )  rei  z
10
School of Software
30. The Logarithmic Function
 The Logarithmic Function
log z  ln r  i (  2n ), (n  0, 1, 2,...)
z  rei  0
 ln | z | i arg( z )
Suppose that 𝝝 is the principal value of argz, i.e. -π <𝝝 ≤π
Lo g z  ln r  iArg ( z )  ln r  i
is single valued.
And
log z  Logz  i 2n , n  0, 1, 2,...
11
School of Software
30. The Logarithmic Function
 Example 1
log(1  3i )  ?
log(1  3i )  log(2e
i ( 2 /3)
)
2
 ln 2  i (
 2n ), n  0, 1, 2...
3
12
School of Software
30. The Logarithmic Function
 Example 2 & 3
log1  ln1  i(0  2n )  2n i, n  0, 1, 2,...
Log1  0
log(1)  ln1  i(  2n )  (2n  1) i, n  0, 1, 2,...
Log (1)   i
13
School of Software
31. Branches and Derivatives of Logarithms
 The Logarithm Function
log z  ln r  i (  2n ), n  0, 1, 2,...
where𝝝=Argz, is multiple-valued.
If we let θ is any one of the value in arg(z), and let α denote any
real number and restrict the value of θ so that
      2
The above function becomes single-valued.
log z  ln r  i , (r  0,       2 )
With components
u (r , )  ln r & v(r , )  
14
School of Software
31. Branches and Derivatives of Logarithms
 The Logarithm Function
log z  ln r  i , (r  0,       2 )
is not only continuous but also analytic throughout the
domain
r  0,       2
A connected open set
  ?
15
School of Software
31. Branches and Derivatives of Logarithms
 The derivative of Logarithms
log z  ln r  i , (r  0,       2 )
u (r , )  ln r & v(r , )  
rur  v & u  rvr
d
1
1
 i
 i 1
log z  e (ur  ivr )  e (  i 0)  i 
dz
r
re
z
d
1
L og z 
dz
z
16
School of Software
31. Branches and Derivatives of Logarithms
 Examples
When the principal branch is considered, then
And
Log (i3 )  Log (i)


 ln1  i   i
2
2

3
3Log (i )  3(ln1  i ) 
i
2
2
Log (i 3 )  3Log (i)
17
School of Software
31. Homework
pp. 97-98
Ex. 1, Ex. 3, Ex. 4, Ex. 9, Ex. 10
18
School of Software
32. Some Identities Involving Logarithms
log( z1 z2 )  log z1  log z2
where
z1  r1ei1  0 & z2  r2ei2  0
log( z1 z2 )  log(r1ei1 r2ei2 )  ln(r1r2 )  i (1   2  2n )
 ln r1  ln r2  i(1  2n1 )  i(2  2n2 )
 [ln r1  i(1  2n1 )]  [ln r2  i(2  2n2 )]
 (ln | z1 | i arg z1 )  (ln | z2 | i arg z2 )
 log z1  log z2
n  n1  n2
z1
log( )  log( z1 z21 )  log z1  log z21  log z1  log z2
z2
19
School of Software
32. Some Identities Involving Logarithms
 Example
z1  z2  1
log( z1 z2 )  log(1)  2n i
log( z1 )  log( z2 )  log(1)  (2n  1) i
log z1  log z2  (2n1  1) i  (2n2  1) i  2(n1  n2  1) i
 2n i  log( z1 z2 )
20
n  n1  n2  1
School of Software
32. Some Identities Involving Logarithms
When z≠0, then
z n  en log z (n  0, 1, 2,...)
z1/ n  e
1
log z
n
z c  ec log z
(n  1, 2,3...)
Where c is any complex number
21
School of Software
32. Homework
pp. 100
Ex. 1, Ex. 2, Ex. 3
22
School of Software
33. Complex Exponents
 Complex Exponents
When z≠0 and the exponent c is any complex number,
the function zc is defined by means of the equation
z e
c
c log z
where logz denotes the multiple-valued logarithmic
function. Thus, zc is also multiple-valued.
The principal value of zc is defined by
z e
c
cL og z
23
School of Software
33. Complex Exponents
If
z  rei and α is any real number, the branch
log z  ln r  i
(r  0,       2 )
Of the logarithmic function is single-valued and analytic in the indicated domain.
When the branch is used, it follows that the function
z c  exp(c log z )
is single-valued and analytic in the same domain.
d c d
c
z  exp(c log z )  exp(c log z )
dz
dz
z
24
School of Software
33. Complex Exponents
 Example 1
i
2i
 exp(2i log i)

1
log i  ln1  i(  2n )  (2n  ) i, ( n  0, 1, 2,...)
2
2
i
2i
 exp[(4n  1) ],(n  0, 1, 2,...)
Note that i-2i are all real numbers
25
School of Software
33. Complex Exponents
 Example 2
The principal value of (-i)i is


exp(iLog (i ))  exp(i (ln1  i ))  exp
2
2
P.V.
i
i  exp

2
26
School of Software
33. Complex Exponents
 Example 3
The principal branch of z2/3 can be written
2
2
2
2
exp( Logz )  exp( ln r  i)  3 r 2 exp(i
)
3
3
3
3
Thus
P.V.
2
3
z  3 r 2 cos
2 3 2
2
 i r sin
3
3
This function is analytic in the domain r>0, -π<𝝝<π
27
School of Software
33. Complex Exponents
 Example 4
Consider the nonzero complex numbers
z1  1  i, z2  1  i & z3  1  i
When principal values are considered
( z1 z2 )i  2i  eiLog 2  ei ln 2
( z2 z3 )i  (2)i  eiLog(-2) e  ei ln 2
z1i  eiLog (1i )  e /4ei (ln 2)/2
( z1 z2 )i  z1i z2i
z2i  eiLog (1i )  e /4ei (ln 2)/2
( z2 z3 )i  z2i z3i e 2
z3i  eiLog ( 1i )  e3 /4 ei (ln 2)/2
28
School of Software
33. Complex Exponents
 The exponential function with base c
c e
z
z log c
Based on the definition, the function cz is multiple-valued.
And the usual interpretation of ez (single-valued) occurs when the principal
value of the logarithm is taken. The principal value of loge is unity.
When logc is specified, cz is an entire function of z.
d z d z log c
c  e
 e z log c log c  c z log c
dz
dz
29
School of Software
33. Homework
pp. 104
Ex. 2, Ex. 4, Ex. 8
30
School of Software
34. Trigonometric Functions
 Trigonometric Functions
Based on the Euler’s Formula
eix  cos x  i sin x & e ix  cos x  i sin x
eix  eix
eix  eix
sin x 
& cos x 
2i
2
eiz  eiz
eiz  eiz
sin z 
& cos z 
2i
2
31
Here x and y are real numbers
Here z is a complex number
School of Software
34. Trigonometric Functions
 Trigonometric Functions
eiz  eiz
eiz  eiz
sin z 
& cos z 
2i
2
Both sinz and cosz are entire since they are linear combinations
of the entire Function eiz and e-iz
d
d
sin z  cos z & cos z   sin z
dz
dz
32
School of Software
34. Homework
pp.108-109
Ex. 2, Ex. 3
33
School of Software
35. Hyperbolic Functions
 Hyperbolic Function
e z  e z
e z  e z
sinh z 
, cosh z 
2
2
Both sinhz and coshz are entire since they are linear combinations
of the entire Function eiz and e-iz
d
d
sinh z  cosh z , cosh z  sinh z
dz
dz
34
School of Software
35. Hyperbolic Functions
 Hyperbolic v.s. Trgonometric
i sinh(iz )  sin z & cosh(iz )  cos z
i sin(iz )  sinh z & cos(iz )  cosh z
35
School of Software
35. Homework
pp. 111-112
Ex. 3
36
School of Software
36. Inverse Trigonometric and Hyperbolic Functions
In order to define the inverse sin function sin-1z, we write
w  sin 1 z
eiw  eiw
sin w  z 
2i
When
sin w  z
(eiw )2  2iz (eiw )  1  0
eiw  iz  (1  z 2 )1/2
w  sin 1 z  i log(iz  (1  z 2 )1/2 )
Similar, we get
cos1 z  i log( z  i(1  z 2 )1/2 )
i
iz
tan z  lo g
2
iz
1
Multiple-valued functions.
One to infinite many values
Note that when specific branches of the square root and logarithmic functions are used,
all three Inverse functions become single-valued and analytic.
37
School of Software
36. Inverse Trigonometric and Hyperbolic Functions
 Inverse Hyperbolic Functions
sinh 1 z  log[ z  ( z 2  1)1/2 ]
cosh 1 z  log[ z  ( z 2  1)1/2 ]
1
1 z
tanh z  log
2
1 z
1
38
School of Software
36. Homework
pp. 114-115
Ex. 1
39
School of Software
Related documents