Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 3. Elementary Functions Weiqi Luo (骆伟祺) School of Software Sun Yat-Sen University Email:[email protected] Office:# A313 Chapter 3: Elementary Functions The Exponential Functions The Logarithmic Function Branches and Derivatives of Logarithms Some Identities Involving Logarithms Complex Exponents Trigonometric Function Hyperbolic Functions Inverse Trigonometric and Hyperbolic Functions 2 School of Software 29. The Exponential Function The Exponential Function e e e , z x iy z x iy Single-Valued According to the Euler’ Formula e cos y i sin y iy u(x,y) v(x,y) e e cos y ie sin y z x x Note that here when x=1/n (n=2,3…) & y=0, e1/n denotes the positive nth root of e. 3 School of Software 29. The Exponential Function Properties e e e z1 Let z2 z1 z2 z1 x1 iy1; z2 x2 +iy2 Real value: ex1 +iy1 ex2 +iy2 (ex1 eiy1 )(ex2 eiy2 ) (e e )(e e ) x1 x 2 e iy1 iy2 e x1 e x 2 =e x1 x 2 Refer to pp. 18 eiy1 eiy2 ei(y1 y2 ) x1 x 2 i(y1 y2 ) e z1 z2 ( x1 x2 )+i( y1 y2 ) e z1 +z2 4 School of Software 29. The Exponential Function Properties e z1 z2 e e z2 e z1 z1 z2 e z2 z2 e e 0 z1 Refer to Example 1 in Sec 22, (pp.68), we have that d z e ez dz everywhere in the z plane which means that the function ez is entire. 5 School of Software 29. The Exponential Function Properties ez 0 e e e re z x iy i For any complex number z r ex & y r | e z | e x 0 & arg(e z ) y 2n (n 0, 1, 2,...) e z 2 i z 2 i e e e z 2 i e z , e2 i cos 2 i sin 2 1 which means that the function ez is periodic, with a pure imaginary period of 2πi 6 School of Software 29. The Exponential Function Properties e 0 x For any real value x while ez can be a negative value, for instance ei cos i sin 1 7 School of Software 29. The Exponential Function Example In order to find numbers z=x+iy such that e 1 i z ez exeiy 2ei /4 i /4 e 2 &e e x iy 1 ln 2 & y 2n , (n 0, 1, 2,...) 2 4 1 1 z ln 2 i ( 2n), (n 0, 1, 2,...) 2 4 x 8 School of Software 29. Homework pp. 92-93 Ex. 1, Ex. 6, Ex. 8 9 School of Software 30. The Logarithmic Function The Logarithmic Function log z ln r i ( 2n ), (n 0, 1, 2,...) z rei 0 Please note that the Logarithmic Function is the multiple-valued function. ln r i ln r i( 2 ) ln r i( 2 ) z rei One to infinite values … It is easy to verify that elog z eln r i ( 2 n ) eln r ei ( 2 n ) rei z 10 School of Software 30. The Logarithmic Function The Logarithmic Function log z ln r i ( 2n ), (n 0, 1, 2,...) z rei 0 ln | z | i arg( z ) Suppose that 𝝝 is the principal value of argz, i.e. -π <𝝝 ≤π Lo g z ln r iArg ( z ) ln r i is single valued. And log z Logz i 2n , n 0, 1, 2,... 11 School of Software 30. The Logarithmic Function Example 1 log(1 3i ) ? log(1 3i ) log(2e i ( 2 /3) ) 2 ln 2 i ( 2n ), n 0, 1, 2... 3 12 School of Software 30. The Logarithmic Function Example 2 & 3 log1 ln1 i(0 2n ) 2n i, n 0, 1, 2,... Log1 0 log(1) ln1 i( 2n ) (2n 1) i, n 0, 1, 2,... Log (1) i 13 School of Software 31. Branches and Derivatives of Logarithms The Logarithm Function log z ln r i ( 2n ), n 0, 1, 2,... where𝝝=Argz, is multiple-valued. If we let θ is any one of the value in arg(z), and let α denote any real number and restrict the value of θ so that 2 The above function becomes single-valued. log z ln r i , (r 0, 2 ) With components u (r , ) ln r & v(r , ) 14 School of Software 31. Branches and Derivatives of Logarithms The Logarithm Function log z ln r i , (r 0, 2 ) is not only continuous but also analytic throughout the domain r 0, 2 A connected open set ? 15 School of Software 31. Branches and Derivatives of Logarithms The derivative of Logarithms log z ln r i , (r 0, 2 ) u (r , ) ln r & v(r , ) rur v & u rvr d 1 1 i i 1 log z e (ur ivr ) e ( i 0) i dz r re z d 1 L og z dz z 16 School of Software 31. Branches and Derivatives of Logarithms Examples When the principal branch is considered, then And Log (i3 ) Log (i) ln1 i i 2 2 3 3Log (i ) 3(ln1 i ) i 2 2 Log (i 3 ) 3Log (i) 17 School of Software 31. Homework pp. 97-98 Ex. 1, Ex. 3, Ex. 4, Ex. 9, Ex. 10 18 School of Software 32. Some Identities Involving Logarithms log( z1 z2 ) log z1 log z2 where z1 r1ei1 0 & z2 r2ei2 0 log( z1 z2 ) log(r1ei1 r2ei2 ) ln(r1r2 ) i (1 2 2n ) ln r1 ln r2 i(1 2n1 ) i(2 2n2 ) [ln r1 i(1 2n1 )] [ln r2 i(2 2n2 )] (ln | z1 | i arg z1 ) (ln | z2 | i arg z2 ) log z1 log z2 n n1 n2 z1 log( ) log( z1 z21 ) log z1 log z21 log z1 log z2 z2 19 School of Software 32. Some Identities Involving Logarithms Example z1 z2 1 log( z1 z2 ) log(1) 2n i log( z1 ) log( z2 ) log(1) (2n 1) i log z1 log z2 (2n1 1) i (2n2 1) i 2(n1 n2 1) i 2n i log( z1 z2 ) 20 n n1 n2 1 School of Software 32. Some Identities Involving Logarithms When z≠0, then z n en log z (n 0, 1, 2,...) z1/ n e 1 log z n z c ec log z (n 1, 2,3...) Where c is any complex number 21 School of Software 32. Homework pp. 100 Ex. 1, Ex. 2, Ex. 3 22 School of Software 33. Complex Exponents Complex Exponents When z≠0 and the exponent c is any complex number, the function zc is defined by means of the equation z e c c log z where logz denotes the multiple-valued logarithmic function. Thus, zc is also multiple-valued. The principal value of zc is defined by z e c cL og z 23 School of Software 33. Complex Exponents If z rei and α is any real number, the branch log z ln r i (r 0, 2 ) Of the logarithmic function is single-valued and analytic in the indicated domain. When the branch is used, it follows that the function z c exp(c log z ) is single-valued and analytic in the same domain. d c d c z exp(c log z ) exp(c log z ) dz dz z 24 School of Software 33. Complex Exponents Example 1 i 2i exp(2i log i) 1 log i ln1 i( 2n ) (2n ) i, ( n 0, 1, 2,...) 2 2 i 2i exp[(4n 1) ],(n 0, 1, 2,...) Note that i-2i are all real numbers 25 School of Software 33. Complex Exponents Example 2 The principal value of (-i)i is exp(iLog (i )) exp(i (ln1 i )) exp 2 2 P.V. i i exp 2 26 School of Software 33. Complex Exponents Example 3 The principal branch of z2/3 can be written 2 2 2 2 exp( Logz ) exp( ln r i) 3 r 2 exp(i ) 3 3 3 3 Thus P.V. 2 3 z 3 r 2 cos 2 3 2 2 i r sin 3 3 This function is analytic in the domain r>0, -π<𝝝<π 27 School of Software 33. Complex Exponents Example 4 Consider the nonzero complex numbers z1 1 i, z2 1 i & z3 1 i When principal values are considered ( z1 z2 )i 2i eiLog 2 ei ln 2 ( z2 z3 )i (2)i eiLog(-2) e ei ln 2 z1i eiLog (1i ) e /4ei (ln 2)/2 ( z1 z2 )i z1i z2i z2i eiLog (1i ) e /4ei (ln 2)/2 ( z2 z3 )i z2i z3i e 2 z3i eiLog ( 1i ) e3 /4 ei (ln 2)/2 28 School of Software 33. Complex Exponents The exponential function with base c c e z z log c Based on the definition, the function cz is multiple-valued. And the usual interpretation of ez (single-valued) occurs when the principal value of the logarithm is taken. The principal value of loge is unity. When logc is specified, cz is an entire function of z. d z d z log c c e e z log c log c c z log c dz dz 29 School of Software 33. Homework pp. 104 Ex. 2, Ex. 4, Ex. 8 30 School of Software 34. Trigonometric Functions Trigonometric Functions Based on the Euler’s Formula eix cos x i sin x & e ix cos x i sin x eix eix eix eix sin x & cos x 2i 2 eiz eiz eiz eiz sin z & cos z 2i 2 31 Here x and y are real numbers Here z is a complex number School of Software 34. Trigonometric Functions Trigonometric Functions eiz eiz eiz eiz sin z & cos z 2i 2 Both sinz and cosz are entire since they are linear combinations of the entire Function eiz and e-iz d d sin z cos z & cos z sin z dz dz 32 School of Software 34. Homework pp.108-109 Ex. 2, Ex. 3 33 School of Software 35. Hyperbolic Functions Hyperbolic Function e z e z e z e z sinh z , cosh z 2 2 Both sinhz and coshz are entire since they are linear combinations of the entire Function eiz and e-iz d d sinh z cosh z , cosh z sinh z dz dz 34 School of Software 35. Hyperbolic Functions Hyperbolic v.s. Trgonometric i sinh(iz ) sin z & cosh(iz ) cos z i sin(iz ) sinh z & cos(iz ) cosh z 35 School of Software 35. Homework pp. 111-112 Ex. 3 36 School of Software 36. Inverse Trigonometric and Hyperbolic Functions In order to define the inverse sin function sin-1z, we write w sin 1 z eiw eiw sin w z 2i When sin w z (eiw )2 2iz (eiw ) 1 0 eiw iz (1 z 2 )1/2 w sin 1 z i log(iz (1 z 2 )1/2 ) Similar, we get cos1 z i log( z i(1 z 2 )1/2 ) i iz tan z lo g 2 iz 1 Multiple-valued functions. One to infinite many values Note that when specific branches of the square root and logarithmic functions are used, all three Inverse functions become single-valued and analytic. 37 School of Software 36. Inverse Trigonometric and Hyperbolic Functions Inverse Hyperbolic Functions sinh 1 z log[ z ( z 2 1)1/2 ] cosh 1 z log[ z ( z 2 1)1/2 ] 1 1 z tanh z log 2 1 z 1 38 School of Software 36. Homework pp. 114-115 Ex. 1 39 School of Software