Download 1349 KB

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Difficulties in Mathematical Modelling of
Control Processes in One-type Neuron
Populations
Pokrovsky A.N. , Sotnikov O.S.
Проблемы математического моделирования
процессов управления популяцией
однотипных нейронов
А.Н.Покровский, О.С.Сотников
Санкт-Петербургский гос. университет,
Институт физиологии им. И.П. Павлова РАН
I. Neurons
10
There are roughly 10
in a human brain.
neurons
Схематическое изображение нейрона
Intracellular potential
1011
V
φ
Extracellular potential
Notations: V - Intracellular potential,
φ - Extracellular potential
• Geometrical model of a neuron: geometry graph
(tree) Г0
• Branches : lines (of Г0) .
• Nodes: points (nodes of Г0 ).
• Electrical model of a neuron :
• Currents along branches i(x,t) ;
• Currents across branches through surface I(x,t)
• Diffusion model: concentrations p(x,t) .
Equations on the branches (of graph Г0):
i( x ,t )   s( x )Vx ( x ,t ); x   k , k  1,..., K ,
(1)
I ( x ,t )  l 1( x )ix ( x ,t )   l 1( x )( s( x )Vx ( x ,t ))x  I C  I Na  I K  I L  I s .
I C  C( Vt ( x ,t )   t ( x ,t ));
I K  g K p3 q34 ( V    VK );
I Na  g Na q13 q2 ( V    VNa );
I L  g L ( V    VL );
( 3)
I s    ( x  x ) gs ( x ,t  t ,n )( V ( x ,t  t ,n )   ( x ,t  t ,n )  Vs ) .

(2)
(4)
t ,n
( qi ( x ,t ))t  i ( V ( x ,t )   ( x ,t ))  [ i ( V ( x ,t )   ( x ,t ))  i ( V ( x ,t )   ( x ,t ))] qi ( x ,t ) .
( p1 ) t  D1 ( s( x)( p1 ) x ) x   1 p1     ( x  x )c( x , t ).
( p2 )t  D2 (s( x)( p2 ) x ) x   2 p2  p1;
•
•
p3  f ( p2 ( x, t ) ,
( 5)
(6)
(7)
Conditions in points of branching : 1) continuity by х of V(x,t), p(x,t);
2) The sum of currents i(x,t) and flours p(x,t) into the node is equal zero.
II.
Sincitial connections of neurons.
• Fig. 1 [1]. Pores between two
axons and between three
dendrites.
• Arrows – the pores; С – soma of
the neuron. El. microscope. Ув.
30000.
• [1].
O.S. Sotnikov. Statics and
structural kinetic of living asynaptic
dendrites.
St.-Petersburg,
«NAUKA», 2008. - 397 с.
Fig. 2. Pores (arrows) near
axon-dendrit synapses.
а,б – variants of structures. El.
microscope. Ув. 40000.
• Fig. 3. Forms of
inter-neurons
connections.
• а – chemical synapse; б-в
– electrical contacts; г –
cito-plasmic sincitium.
Arrows – perforations.
• Down – geometrical model
for electrical (б, в, г) and
chemical (г) signals.
Fig. 4
• Different inter-neuronal connections:
• а – between processes of neurons;
• б – between soma of neurons;
Doun: geometry
models
• в – between axon and dendrite in the synapse.
а
б
с
в
Fig. 5 [1].
• One neuron.
• Faze contrast, об. 20, ок.
10.
Fig. 6 [1].
• Contacts of
neurons.
• Faze
contrast,
об. 20,
ок. 10.
III. Equatios for clusters of neurons
• Several neurons with connections by
pores are named cluster; denote as Гр .
•
Geometry model – geometrical graph.
• Several neurons with connections by
electrical contacts and by pores are
named electrical cluster; denote as ГЕ .
•
Geometry model – geometrical graph.
Equations for Гр (diffusion)
( p1 ) t  D1 ( s( x)( p1 ) x ) x   1 p1     ( x  x )c( x , t ).
( p2 )t  D2 (s( x)( p2 ) x ) x   2 p2  p1;
(6)
p3  f ( p2 ( x, t ) ,
(7)
Equations for ГE (electrical cluster)
i( x ,t )   s( x )Vx ( x ,t ); x   k , k  1,..., K ,
I ( x ,t )  l 1( x )ix ( x ,t )   l 1( x )( s( x )Vx ( x ,t ))x  I C  I Na  I K  I L  I s .
I C  C( Vt ( x ,t )   t ( x ,t ));
I Na  g Na q13 q2 ( V    VNa );
I K  g K p3 q34 ( V    VK );
I L  g L ( V    VL );
I s    ( x  x ) gs ( x ,t  t ,n )( V ( x ,t  t ,n )   ( x ,t  t ,n )  Vs ) .

(2)
( 3)
(4)
t ,n
( qi ( x ,t ))t  i ( V ( x ,t )   ( x ,t ))  [ i ( V ( x ,t )   ( x ,t ))  i ( V ( x ,t )   ( x ,t ))] qi ( x ,t ) .
•
•
(1)
( 5)
Conditions in nodes: 1) continuous by х V(x,t), p(x,t);
2) Sum of currents i(x,t) and flours p(x,t) , into the node is equal zero.
Graphs Гр
граф Гр к виду
ГE
and
ГE
differ !
и только после этого интегрировать уравнения.
END
Related documents