Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Difficulties in Mathematical Modelling of Control Processes in One-type Neuron Populations Pokrovsky A.N. , Sotnikov O.S. Проблемы математического моделирования процессов управления популяцией однотипных нейронов А.Н.Покровский, О.С.Сотников Санкт-Петербургский гос. университет, Институт физиологии им. И.П. Павлова РАН I. Neurons 10 There are roughly 10 in a human brain. neurons Схематическое изображение нейрона Intracellular potential 1011 V φ Extracellular potential Notations: V - Intracellular potential, φ - Extracellular potential • Geometrical model of a neuron: geometry graph (tree) Г0 • Branches : lines (of Г0) . • Nodes: points (nodes of Г0 ). • Electrical model of a neuron : • Currents along branches i(x,t) ; • Currents across branches through surface I(x,t) • Diffusion model: concentrations p(x,t) . Equations on the branches (of graph Г0): i( x ,t ) s( x )Vx ( x ,t ); x k , k 1,..., K , (1) I ( x ,t ) l 1( x )ix ( x ,t ) l 1( x )( s( x )Vx ( x ,t ))x I C I Na I K I L I s . I C C( Vt ( x ,t ) t ( x ,t )); I K g K p3 q34 ( V VK ); I Na g Na q13 q2 ( V VNa ); I L g L ( V VL ); ( 3) I s ( x x ) gs ( x ,t t ,n )( V ( x ,t t ,n ) ( x ,t t ,n ) Vs ) . (2) (4) t ,n ( qi ( x ,t ))t i ( V ( x ,t ) ( x ,t )) [ i ( V ( x ,t ) ( x ,t )) i ( V ( x ,t ) ( x ,t ))] qi ( x ,t ) . ( p1 ) t D1 ( s( x)( p1 ) x ) x 1 p1 ( x x )c( x , t ). ( p2 )t D2 (s( x)( p2 ) x ) x 2 p2 p1; • • p3 f ( p2 ( x, t ) , ( 5) (6) (7) Conditions in points of branching : 1) continuity by х of V(x,t), p(x,t); 2) The sum of currents i(x,t) and flours p(x,t) into the node is equal zero. II. Sincitial connections of neurons. • Fig. 1 [1]. Pores between two axons and between three dendrites. • Arrows – the pores; С – soma of the neuron. El. microscope. Ув. 30000. • [1]. O.S. Sotnikov. Statics and structural kinetic of living asynaptic dendrites. St.-Petersburg, «NAUKA», 2008. - 397 с. Fig. 2. Pores (arrows) near axon-dendrit synapses. а,б – variants of structures. El. microscope. Ув. 40000. • Fig. 3. Forms of inter-neurons connections. • а – chemical synapse; б-в – electrical contacts; г – cito-plasmic sincitium. Arrows – perforations. • Down – geometrical model for electrical (б, в, г) and chemical (г) signals. Fig. 4 • Different inter-neuronal connections: • а – between processes of neurons; • б – between soma of neurons; Doun: geometry models • в – between axon and dendrite in the synapse. а б с в Fig. 5 [1]. • One neuron. • Faze contrast, об. 20, ок. 10. Fig. 6 [1]. • Contacts of neurons. • Faze contrast, об. 20, ок. 10. III. Equatios for clusters of neurons • Several neurons with connections by pores are named cluster; denote as Гр . • Geometry model – geometrical graph. • Several neurons with connections by electrical contacts and by pores are named electrical cluster; denote as ГЕ . • Geometry model – geometrical graph. Equations for Гр (diffusion) ( p1 ) t D1 ( s( x)( p1 ) x ) x 1 p1 ( x x )c( x , t ). ( p2 )t D2 (s( x)( p2 ) x ) x 2 p2 p1; (6) p3 f ( p2 ( x, t ) , (7) Equations for ГE (electrical cluster) i( x ,t ) s( x )Vx ( x ,t ); x k , k 1,..., K , I ( x ,t ) l 1( x )ix ( x ,t ) l 1( x )( s( x )Vx ( x ,t ))x I C I Na I K I L I s . I C C( Vt ( x ,t ) t ( x ,t )); I Na g Na q13 q2 ( V VNa ); I K g K p3 q34 ( V VK ); I L g L ( V VL ); I s ( x x ) gs ( x ,t t ,n )( V ( x ,t t ,n ) ( x ,t t ,n ) Vs ) . (2) ( 3) (4) t ,n ( qi ( x ,t ))t i ( V ( x ,t ) ( x ,t )) [ i ( V ( x ,t ) ( x ,t )) i ( V ( x ,t ) ( x ,t ))] qi ( x ,t ) . • • (1) ( 5) Conditions in nodes: 1) continuous by х V(x,t), p(x,t); 2) Sum of currents i(x,t) and flours p(x,t) , into the node is equal zero. Graphs Гр граф Гр к виду ГE and ГE differ ! и только после этого интегрировать уравнения. END