Download PRJ3-TemplateProgressKF - CVC

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Assignment 0X (dd/mm/yyyy)
JohnSmith, JohnSmith, JohnSmith, JohnSmith, JohnSmith.
PROGRESS PRESENTATION
Assignment description
•Color Depolarization of super-pixel artifacts
•Multifiltering of spectral Gaussians
•Decoloration of traffic lipids
      42
Master in Computer Vision and Artificial Intelligence mcvai.uab.es
Computer Vision Center and Institut d’Investigació en Ingel·ligencia Artificial
(Universitat Autònoma de Barcelona)
Assignment 0X (dd/mm/yyyy)
JohnSmith, JohnSmith, JohnSmith, JohnSmith, JohnSmith.
PROGRESS PRESENTATION
Exercise 1. Implementation
• init_models1.m
Matlab Code
• kalman_filter.m
Matlab Code
Master in Computer Vision and Artificial Intelligence mcvai.uab.es
Computer Vision Center and Institut d’Investigació en Ingel·ligencia Artificial
(Universitat Autònoma de Barcelona)
Assignment 0X (dd/mm/yyyy)
JohnSmith, JohnSmith, JohnSmith, JohnSmith, JohnSmith.
PROGRESS PRESENTATION
Exercise 2. Models
• Compare the trajectories obtained with the models in InitModels2a and
InitModels2b. How can you explain the abruptness or smoothness of each
trajectory, in terms of the model used?
Master in Computer Vision and Artificial Intelligence mcvai.uab.es
Computer Vision Center and Institut d’Investigació en Ingel·ligencia Artificial
(Universitat Autònoma de Barcelona)
Assignment 0X (dd/mm/yyyy)
JohnSmith, JohnSmith, JohnSmith, JohnSmith, JohnSmith.
PROGRESS PRESENTATION
Exercise 3. Performance (Seq2.avi)
• Compare the trajectories obtained with the models in InitModels2a and
InitModels2b. How can you explain the abruptness or smoothness of each
trajectory, in terms of the model used?
Master in Computer Vision and Artificial Intelligence mcvai.uab.es
Computer Vision Center and Institut d’Investigació en Ingel·ligencia Artificial
(Universitat Autònoma de Barcelona)
Assignment 0X (dd/mm/yyyy)
JohnSmith, JohnSmith, JohnSmith, JohnSmith, JohnSmith.
PROGRESS PRESENTATION
Exercise 4. Gating (Seq2_miss.avi)
• Is the target misstracked ? Why?
• Modify data_association.m and kalman_filter.m according to assignment
instructions.
Matlab Code
• Does it solves the problem ? How the Kalman estimation behaves in the
abscense of observations ?
Master in Computer Vision and Artificial Intelligence mcvai.uab.es
Computer Vision Center and Institut d’Investigació en Ingel·ligencia Artificial
(Universitat Autònoma de Barcelona)
Assignment 0X (dd/mm/yyyy)
JohnSmith, JohnSmith, JohnSmith, JohnSmith, JohnSmith.
PROGRESS PRESENTATION
Optional Exercise. EKF or UKF (Seq3.avi)
• Details of the implementation, performance analysis, ...
Master in Computer Vision and Artificial Intelligence mcvai.uab.es
Computer Vision Center and Institut d’Investigació en Ingel·ligencia Artificial
(Universitat Autònoma de Barcelona)
Related documents