Download document 8540151

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The convolution theorem
multiplication
MIT 2.71/2.710
04/08/09 wk9-b-18
convolution
The convolution theorem
multiplication
MIT 2.71/2.710
04/08/09 wk9-b-19
convolution
Fraunhofer diffraction patterns
MIT 2.71/2.710
04/08/09 wk9-b-20
∞
→
z
∞
→
z
∞
z→
∞
z→
Spatial filtering
space domain
3 sinusoids
MIT 2.71/2.710
04/08/09 wk9-b-21
Fourier domain
Spatial filtering
space domain
2 sinusoids (one removed)
MIT 2.71/2.710
04/08/09 wk9-b-22
Fourier domain
Spatial filtering of a scene
Unfiltered: all spatial frequencies present
0
MIT 2.71/2.710
04/08/09 wk9-b-23
Spatial filtering of a scene
Low-pass filtered: high spatial frequencies removed
0
MIT 2.71/2.710
04/08/09 wk9-b-24
Spatial filtering of a scene
Band-pass filtered: high & low spatial frequencies removed
0
MIT 2.71/2.710
04/08/09 wk9-b-25
The transfer function of Fresnel propagation
Fresnel (free space) propagation may be expressed as a
convolution integral
MIT 2.71/2.710
04/08/09 wk9-b-26
Today
• Fourier transforming properties of lenses
• Spherical - plane wave duality
• The telescope (4F system) revisited
– imaging as a cascade of Fourier transforms
– spatial filtering by a pupil plane transparency
Wednesday
• Spatial filtering in the 4F system
• Point-Spread Function (PSF)
and Amplitude Transfer Function (ATF)
MIT 2.71/2.710
04/13/09 wk10-a- 1
Reminder: thin lens (geometrical optics)
f (focal length)
object at ∞
(plane wave)
image at
back focal plane
f (focal length)
object at
front focal plane
image at ∞
(plane wave)
amount of ray bending is proportional to the distance from the optical axis
point object
at finite distance
(spherical wave)
point image
at finite distance
(spherical wave)
so
MIT 2.71/2.710
04/13/09 wk10-a- 2
si
Thin lens complex transmittance
Δ(x,y)
Δ0
Δ(x,y): glass thickness
at coordinate (x,y)
n: index of refraction
R1, R2: radii of curvature
MIT 2.71/2.710
04/13/09 wk10-a- 3
Plane wave incident on a lens
back focal plane
θ0 f =
spherical wave
converging to u0λf
f
MIT 2.71/2.710
04/13/09 wk10-a- 4
Spherical wave incident on a lens
front focal plane
spherical wave,
diverging
off–axis
MIT 2.71/2.710
04/13/09 wk10-a- 5
plane wave
plane wave
converging to u0λf
Fourier transforming property of lenses
MIT 2.71/2.710
04/13/09 wk10-a- 6
MIT OpenCourseWare
http://ocw.mit.edu
2.71 / 2.710 Optics
Spring 2009
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Related documents