Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
10 September 2001 6th Symposium on Frequency Standards & Metrology Relativistic Quantum Theory of Microwave and Optical Atomic Clocks by Christian J. Bordé Laboratoire de Physique des Lasers, Villetaneuse and Bureau National de Métrologie, Paris 10 September 2001 6th Symposium on Frequency Standards & Metrology ATOMS ARE WAVES ! v ldeBroglie k 2 The recoil energy is not negligible any more in Cesium clocks 2M Atom sources may be coherent sources of matter-wave Different from small clocks carried by classical point particles Atomic frame of reference may not be well defined Atomic clocks are fully quantum devices, in which both the internal and external degrees of freedom of the atoms must be quantized Gravitation and inertia play an important role: Atomic clocks are relativistic devices 10 September 2001 6th Symposium on Frequency Standards & Metrology Atom laser Rubidium atoms are extracted from a cold rubidium gas (left) and from a Bose-Einstein condensate(right). An intense low divergence atomic beam falls under the effect of gravity. courtesy of the university of Munich 10 September 2001 6th Symposium on Frequency Standards & Metrology ENERGY E(p) atom slope=v hdB rest mass h Mc 2 h/l MOMENTUM photon slope=c h / ldB p K 10 September 2001 z 6th Symposium on Frequency Standards & Metrology ATOMIC WAVES y a(r , t ) x e E M c p c 2 4 2 2 d3p a p 3/ 2 2 i p( r r0 ) E ( p )( t t 0 ) / p x 2ME p y2 p z2 E E p p2 non relativist ic 2 E Mc 2M travelling wave p y2 p z2 paraxial p x 2ME 1 4 ME i p y2 p z2 i x x0 p y y p z z a (r , t ) dp y dp z a p y , p z exp 2 2 ME i i exp 2 ME x x0 E t t0 p y2 p z2 a p y , p z exp 2 exp 2 TEM00 2 2 10 September 2001 6th Symposium on Frequency Standards & Metrology ABCD matrices for light and matter-wave optics y0 x0 x1 Optical System y1 Space or Time x1 A B x0 y1 C D y0 for light rays x1 A B x0 v1 C D v 0 for massive particles In Gaussian optics, the matrix ABCD also gives the transformation law for the waves: 1 1 2 i 2 q R kw transforms as Aq0 B q1 Cq0 D 10 September 2001 6th Symposium on Frequency Standards & Metrology ABCD PROPAGATOR For a wave packet moving with the initial velocity v 0 p0 / M 1/ 2 iM Y0 1 p0 z ' z0 M iM 2 2 2 2 2 exp z ' z dz''exp exp Dz 2 zz ' Az ' exp i dz Dz 2 zz ' Az' 0 iiB B B 22 22B X 0 2 X 0 1 iM iM 2 2 Cz0 Dv 0 z Az0 Bv 0 exp ACz0 DBv 0 2 BCz 0 v 0 exp X 2 1/ 2 iM Y z Az0 Bv 0 2 exp 2 X exp iS / exp ipcl (t )z zcl (t ) / F z zcl (t ), X (t ), Y (t ) zcl Az0 Bv 0 , X AX 0 BY0 v cl Cz0 Dv 0 , Y CX 0 DY0 10 September 2001 6th Symposium on Frequency Standards & Metrology RAMSEY FRINGES WITH TWO SPATIALLY SEPARATED FIELD ZONES y z x a a b a b a b b 10 September 2001 6th Symposium on Frequency Standards & Metrology E(p) n(p) Recoil energy h 2 / 2Ml2 h 2Mk BT h/l p 10 September 2001 6th Symposium on Frequency Standards & Metrology E(p) p 10 September 2001 6th Symposium on Frequency Standards & Metrology RAMSEY FRINGES : FIRST-ORDER TRANSITION AMPLITUDE AFTER A SINGLE FIELD ZONE z y b x a b ATOMS a EM WAVE ((11)) bb ((rr,,tt)) i ei ( kz t ) e w 2 ba kv z 2 / 4 v 2x d 3 p w ba 2 3 / 2 v x Rabi envelope ei ba kv z ( x x1 ) / v x additional momentum iipp((rrrr00))EEaa((pp)()(tttt00))// ((00)) e a ( p, t ) initial wave packet 10 September 2001 6th Symposium on Frequency Standards & Metrology RAMSEY FRINGES WITH TWO SPATIALLY SEPARATED FIELD ZONES EM WAVE 1 EM WAVE 2 a b b a a b w b (r , t ) i baei ( kz t ) vx (1) e e w 2 ba 2 / 4 v 2x i ba ( x x1 ) / v x a (r , t ) (0) (1)* b (r , t )b (r , t ) ei ba ( x2 x1 ) / v x c.c. (1) 10 September 2001 6th Symposium on Frequency Standards & Metrology RAMSEY FRINGES WITH TWO SPATIALLY SEPARATED FIELD ZONES y z b x a a,pz b b ATOMS b a,pz EM WAVE 1 EM WAVE 2 (1) (1)* 2 2 dz b b dp exp w k v / 2 v ba z x 1 2 z 2 exp i ba kv z x2 x1 / v x a ( 0) p z a ( 0)* p z k dz a z x2 x1 / v x , t a ( 0)* z, t M (0) a 10 September 2001 6th Symposium on Frequency Standards & Metrology E(p) Recoil energy h 2 / 2Ml2 p 10 September 2001 6th Symposium on Frequency Standards & Metrology RAMSEY FRINGES WITH TWO SPATIALLY SEPARATED FIELD ZONES y z a a,pz b b a,p'z EM WAVE 1 dz b a b x ATOMS b (1) (1)* 1 2 b dze 2 ikz EM WAVE 2 dp dp' z z exp i p z p' z z / .... a ( 0) p z a ( 0)* p' z p z p' z 2k 10 September 2001 6th Symposium on Frequency Standards & Metrology E(p) p 10 September 2001 6th Symposium on Frequency Standards & Metrology RAMSEY FRINGES WITH TWO SPATIALLY SEPARATED FIELD ZONES y z a b x a a,pz b ATOMS EM WAVE a,pz±2k (1) (1)* dz b 1 b2 expi ba x2 x1 / v x dp b z exp i kv z 2 2 x0 x2 x1 / v x a ( 0) p z a ( 0)* p z 2k b 10 September 2001 6th Symposium on Frequency Standards & Metrology Rubidium clock with a monomode continuous coherent beam Auxiliary Magnetic shield Microwave Height 1m Microwave resonator Detection of F=1,m=0 - Flux 107 atoms/s (gain of 10/ present fountains) - Average density 109 atoms/cm3 for x=50 mm - Continuous operation - No losses between rise and fall: vx=15 mm/s Courtesy of Jean Dalibard and David Guéry-Odelin 10 September 2001 1 6th Symposium on Frequency Standards & Metrology Non-relat ivist ic approach We shall consider quit e generally t he non-relat ivist ic Schroedinger equat ion as t he non-relat ivist ic limit of a general relat ivist ic equat ion described in t he last part of t his course: i ¹h @jª (t )i @t = ) 1 ¡! H0 + p op¢ g (t ) ¢¡!p op 2M ¡! ¡! ¡! ¡ - (t ) ¢( L op + S op) M ) ¡ M~ g(t ) ¢~ r op ¡ ~ r op¢ ° (t ) ¢~ r op 2 + V (~ r op; t )] jª (t )i (1) where H 0 is an int ernal at omic Hamilt onian and V (~ r op; t ) some general int eract ion Hamilt onian wit h an ext ernal ¯eld. Gravit o-inert ial ¯elds are represent ed by t he ) ¡! ) t ensors g (t ) and ° (t ) and by t he vect ors - (t ) and ~ g(t ). T he same t erms can also be used t o represent t he e®ect of various ext ernal elect romagnet ic ¡! ¡! ¯elds. T he operat ors L op = ~ r op £ ¡!p op and S op are respect ively t he orbit al and spin angular moment um 10 September 2001 6th Symposium on Frequency Standards & Metrology ABCDx PROPAGATOR iM iM exp x ( z x ) exp 1/ 2 M 2iB x x g 0 2 / 2 x 2 / 2 gx )dt ( x 1 t ' t iM dz 'exp D( z x ) 2 2( z x ) z ' Az'2 2B iM 11 iM YY00 pp zz''zz00 22 zz''zz00 exp exp exp expii 00 XX00 22 XX00 iM iM iM t 2 2 exp x ( Az0 Bv 0 ) exp ( x x ) dt xx 1 t ' 2 1 iM iM 2 2 exp ACz0 DBv 0 2 BCz 0 v 0 exp Cz0 Dv 0 x z x Az0 Bv 0 X 2 iM Y z Az0 Bv 0 x 2 exp 2 X exp iS / exp ipcl (t )z zcl (t ) / F z zcl (t ), X (t ), Y (t ) zcl Az0 Bv0 x , X AX 0 BY0 vcl Cz0 Dv0 x, Y CX 0 DY0 10 September 2001 6th Symposium on Frequency Standards & Metrology Quite generally, the phase shift along each arm is: S (t, t ) p 0 t cl cl t 0 z 2 1 / ( p ( t ) M x ) dt cl 1 1 2M t0 t i.e. minus the time integral of the kinetic energy 10 September 2001 6th Symposium on Frequency Standards & Metrology FOUNTAIN CLOCK b k x a k ( ba kv z ) / v x 1 2 x gT 2 a b 10 September 2001 6th Symposium on Frequency Standards & Metrology Gravitational/Relativistic Doppler shift for fountain clocks A quantum mechanical calculation ~ Langevin twin paradox exp iS / expipcl (t )z zcl (t ) / 1 2 2 M c M v a ,b a ,b a, b c2 2 2 t 1 2 S a ,b / M a ,b c t t0 ( p0 M a ,bx ) dt1 t 2 M a ,b 0 t p0 t1 t0 x )dt1 M a ,b g (r0 t0 M a ,b M a ,b c 2 / 1 b a Sb Sa a v a,2 b b Eb Ea 1 v 02 2v 0 / 1 6 c 2 g 10 September 2001 6th Symposium on Frequency Standards & Metrology Atom Interferometer Laser beams Atom beam Interféromètres atomiques 10 September 2001 6th Symposium on Frequency Standards & Metrology Jets atomiques Faisceaux laser 10 September 2001 6th Symposium on Frequency Standards & Metrology SATURATION SPECTROSCOPY E(p) E(p ) p recoil doublet p h 2 / Mc 2 10 September 2001 6th Symposium on Frequency Standards & Metrology Optical clocks with cold atoms use the “working horse” of laser cooling: Magneto-optical trap (MOT) In the future new atom sources such as atom lasers 10 September 2001 6th Symposium on Frequency Standards & Metrology Time-domain Ramsey-Bordé interferences with cold Ca atoms 10 September 2001 6th Symposium on Frequency Standards & Metrology THEORY OF OPTICAL CLOCKS: SUCCESSIVE STEPS, RELEVANT STUDIES AND DIRECTIONS OF PROGRESS • 1977: Naive, perturbative and numerical approaches • 1982: 2x2 ABCD matrices for field pulses/zones and free propagation between pulses/zones : still used • 1991: ABCDx formalism for atom wave propagation in a gravitational field • 1994: Strong field S-matrix treatment of the e.m. field zones • 1995: Rabi oscillations in a gravitational field (analogous to frequency chirp in curved wave-fronts) • 1996: Dispersive properties of the group velocity of atom waves in strong e.m. fields To-day we combine all these elements in a new sophisticated and realistic quantum description of optical clocks. This effort is also underway for atomic inertial sensors. Strategies to eliminate inertial field sensitivity of optical clocks 10 September 2001 6th Symposium on Frequency Standards & Metrology RELATIVISTIC PHASE SHIFTS ±' = Z 1 t ( dt 0 c2 ¹ ¡ p h ¹ º (~ x0 + ~ v t 0; t 0)pº ¹h t 0 2E (~ p) " # 2 ¹ 0 0 º ~ ° c p r h ¹ º (~ x0 + ~ v t ; t )p + £ p ~ ¢~ s 2 m (° + 1) 2E (~ p) " à ! # ) ) c ~ p ~c ¡ r £ ~ h(~ x0 + ~ v t 0; t 0)¡ h (~ x0 + ~ v t 0; t 0) ¢ ¢~ s 2 E (~ p) where ~ s is t he mean spin vect or ~ s= X r ;r 0 0 ¯ ¤r;i ¯ r 0;i ¹h w (r )y~ aw (r ) =2° 10 September 2001 6th Symposium on Frequency Standards & Metrology Quite generally, the spin-independent part of the phase shift is: 2 c 1 m m p hm p dt p hm dx 2E 2 1 m m dx dx m A Am with A p hm 2 4 - D Stokes theorem 10 September 2001 6th Symposium on Frequency Standards & Metrology Atom Interferometers as Gravito-Inertial Sensors: I - Gravitoelectric field case with light: Einstein red shift with neutrons: COW experiment (1975) with atoms: Kasevich and Chu (1991) g k Laser beams Atoms T T’ T Gravitational phase shift: 1 c2 2 dt Mc h00 / 2 /M Phase Circulation of potential shift dtd x.h00 / 2 k . g T (T T ' ) Ratio of Mass independent (time)2 gravitoelectric flux to quantum of flux 10 September 2001 6th Symposium on Frequency Standards & Metrology Atom Interferometers as Gravito-Inertial Sensors: II - Gravitomagnetic field case with light: Sagnac (1913) with neutrons: Werner et al.(1979) with atoms: Riehle et al. (1991) Laser beams Atoms Sagnac phase shift: 1 1 ch . p dt c / M Phase Circulation of potential shift 2c. A 2 dS .c curl h c / M Ratio of gravitomagnetic flux to quantum of flux 10 September 2001 6th Symposium on Frequency Standards & Metrology DOPPLER-FREE TWO-PHOTON SPECTROSCOPY E(p) p 10 September 2001 6th Symposium on Frequency Standards & Metrology 2-photon Ramsey fringes experiment +84.757 MHz D2 AOM 2 Tunable ultra-stable laser AOM 1 +160 MHz FM2 Reference laser 4-mirror Fabry-Perot cavity D1 FM1 RF synthesizer Cavity lock phase lock ultra-high resolution spectrometer Supersonic beam (seeded with He) 10 September 2001 6th Symposium on Frequency Standards & Metrology Hyperfine structure of the P(4)E0 23 line of SF6 Interzone : 50 cm 600 Hz 33% SF6, periodicity 600 Hz S/N1Hz 5 a) FM 465 Hz, depth 300 Hz, 28 mW inside the cavity 4.5x105 Pa, 4s/point 690 Hz b) 20% SF6, S/N1Hz 14 periodicity 690 Hz FM 465 Hz, depth 300 Hz, 28 mW inside the cavity, 4.5x105 Pa, 2 s/point. 10 September 2001 6th Symposium on Frequency Standards & Metrology RECOIL SHIFT IN DOPPLER-FREE TWO-PHOTON SPECTROSCOPY E(p) p