Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The spatial frequency domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-1 Recall: plane wave propagation path delay increases linearly with x plane of observation MIT 2.71/2.710 Optics 10/25/04 wk8-a-2 Spatial frequency ⇔angle of propagation? electric field plane of observation MIT 2.71/2.710 Optics 10/25/04 wk8-a-3 Spatial frequency ⇔angle of propagation? plane of observation MIT 2.71/2.710 Optics 10/25/04 wk8-a-4 Spatial frequency ⇔angle of propagation? The cross-section of the optical field with the optical axis is a sinusoid of the form i.e.it looks like where is called the spatial frequency MIT 2.71/2.710 Optics 10/25/04 wk8-a-5 2D sinusoids MIT 2.71/2.710 Optics 10/25/04 wk8-a-6 2D sinusoids min max MIT 2.71/2.710 Optics 10/25/04 wk8-a-7 2D sinusoids min max MIT 2.71/2.710 Optics 10/25/04 wk8-a-8 2D sinusoids min max MIT 2.71/2.710 Optics 10/25/04 wk8-a-9 Periodic Grating /1: vertical Space domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-10 Frequency (Fourier) domain Periodic Grating /2: tilted Space domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-11 Frequency (Fourier) domain Superposition: multiple gratings Space domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-12 Frequency (Fourier) domain More superpositions Space domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-13 Frequency (Fourier) domain Size of object vsfrequency content Space domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-14 Frequency (Fourier) domain Superimposing shifted objects Space domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-15 Frequency (Fourier) domain Linear shift invariant systems in the time domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-16 Linear shift invariant systems MIT 2.71/2.710 Optics 10/25/04 wk8-a-17 Linear shift invariant systems impulse excitation shift invariance MIT 2.71/2.710 Optics 10/25/04 wk8-a-18 impulse excitation Linear shift invariant systems impulse excitation linearity MIT 2.71/2.710 Optics 10/25/04 wk8-a-19 impulse excitation Linear shift invariant systems arbitrary sifting property of the δ-function MIT 2.71/2.710 Optics 10/25/04 wk8-a-20 convolution integral Linear shift invariant systems sinusoid sinusoid attenuation phase delay same frequency transfer function MIT 2.71/2.710 Optics 10/25/04 wk8-a-21 From time to frequency: Fourier analysis Can I express an arbitrary g(t) as a superposition of sinusoids? MIT 2.71/2.710 Optics 10/25/04 wk8-a-22 The Fourier integral (aka inverse Fourier transform) superposition sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids MIT 2.71/2.710 Optics 10/25/04 wk8-a-23 The Fourier transform The complex weight coefficients G(ν), akaFourier transform Fourier transform of g(t) are calculated from the integral MIT 2.71/2.710 Optics 10/25/04 wk8-a-24 Fourier transform pairs MIT 2.71/2.710 Optics 10/25/04 wk8-a-25 2D Fourier transform pairs Image removed due to copyright concerns (from Goodman, Introduction to Fourier Optics, page 14) MIT 2.71/2.710 Optics 10/25/04 wk8-a-26