Download Spatial frequency

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The spatial frequency domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-1
Recall: plane wave propagation
path delay increases
linearly with x
plane of observation
MIT 2.71/2.710 Optics
10/25/04 wk8-a-2
Spatial frequency ⇔angle of propagation?
electric field
plane of observation
MIT 2.71/2.710 Optics
10/25/04 wk8-a-3
Spatial frequency ⇔angle of propagation?
plane of observation
MIT 2.71/2.710 Optics
10/25/04 wk8-a-4
Spatial frequency ⇔angle of propagation?
The cross-section of the optical field with the optical axis
is a sinusoid of the form
i.e.it looks like
where
is called the spatial frequency
MIT 2.71/2.710 Optics
10/25/04 wk8-a-5
2D sinusoids
MIT 2.71/2.710 Optics
10/25/04 wk8-a-6
2D sinusoids
min
max
MIT 2.71/2.710 Optics
10/25/04 wk8-a-7
2D sinusoids
min
max
MIT 2.71/2.710 Optics
10/25/04 wk8-a-8
2D sinusoids
min
max
MIT 2.71/2.710 Optics
10/25/04 wk8-a-9
Periodic Grating /1: vertical
Space
domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-10
Frequency
(Fourier)
domain
Periodic Grating /2: tilted
Space
domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-11
Frequency
(Fourier)
domain
Superposition: multiple gratings
Space
domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-12
Frequency
(Fourier)
domain
More superpositions
Space
domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-13
Frequency
(Fourier)
domain
Size of object vsfrequency content
Space
domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-14
Frequency
(Fourier)
domain
Superimposing shifted objects
Space
domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-15
Frequency
(Fourier)
domain
Linear shift invariant systems
in the time domain
MIT 2.71/2.710 Optics
10/25/04 wk8-a-16
Linear shift invariant systems
MIT 2.71/2.710 Optics
10/25/04 wk8-a-17
Linear shift invariant systems
impulse excitation
shift invariance
MIT 2.71/2.710 Optics
10/25/04 wk8-a-18
impulse excitation
Linear shift invariant systems
impulse excitation
linearity
MIT 2.71/2.710 Optics
10/25/04 wk8-a-19
impulse excitation
Linear shift invariant systems
arbitrary
sifting property of the δ-function
MIT 2.71/2.710 Optics
10/25/04 wk8-a-20
convolution integral
Linear shift invariant systems
sinusoid
sinusoid
attenuation
phase delay
same frequency
transfer function
MIT 2.71/2.710 Optics
10/25/04 wk8-a-21
From time to frequency: Fourier analysis
Can I express an arbitrary g(t)
as a superposition of sinusoids?
MIT 2.71/2.710 Optics
10/25/04 wk8-a-22
The Fourier integral
(aka inverse Fourier transform)
superposition
sinusoids
complex weight,
expresses relative amplitude
(magnitude & phase)
of superposed sinusoids
MIT 2.71/2.710 Optics
10/25/04 wk8-a-23
The Fourier transform
The complex weight coefficients G(ν),
akaFourier transform Fourier transform of
g(t)
are calculated from the integral
MIT 2.71/2.710 Optics
10/25/04 wk8-a-24
Fourier transform pairs
MIT 2.71/2.710 Optics
10/25/04 wk8-a-25
2D Fourier transform pairs
Image removed due to copyright concerns
(from Goodman,
Introduction to
Fourier Optics,
page 14)
MIT 2.71/2.710 Optics
10/25/04 wk8-a-26
Related documents