* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Supernova neutrinos at ICARUS
Survey
Document related concepts
Main sequence wikipedia , lookup
First observation of gravitational waves wikipedia , lookup
X-ray astronomy detector wikipedia , lookup
Star formation wikipedia , lookup
Nuclear drip line wikipedia , lookup
Stellar evolution wikipedia , lookup
Transcript
SUPERNOVA NEUTRINOS AT ICARUS G. Mangano INFN, Napoli Summary - SN explosion dynamics - Neutrino spectra and overall features - SN 1987A at Kamiokande and IMB - SN & ICARUS - SNO, SK, LVD - Oscillations - Issues to be studied H-R DIAGRAM for M3 He and H shell He core burning burning He flash growing He core turn-off white dwarfs H burning SN explosion dynamics Progenitor Proto Neutron Star ~ 109 g/cm3 ~ 3 1014 g/cm3 T ~ 1010 K T ~ 1011 K MFe ~ 1.4 M MPNS ~ 1.4 – 1.7 M RFe ~ 6 103 Km RPNS ~ 10 - 15 Km Energetics E ~ G MNS2/RNS =1.6 1053 erg (MNS/ M)2 (10 km/RNS) 99% neutrinos 1% kinetic energy 0.01% photons !! Evolved massive stars (M> 8 M) have a degenerate core of iron group elements (the most tightly bound nuclei) no further nuclear burning phase at T125 MeV iron photodissociation: instability and collapse begins 56 Fe 13 4n Pressure lost via e- capture on nuclei e ZA X ZA1 X e Inner core collapse is homologous (v/r 400-700 s-1) subsonic for the inner part supersonic for the outer part Neutrino sphere: diffusion time (neutral current interactions on nuclei) larger than collapse time: ’s are trapped in a degenerate sea (YL0.1) at nuclear density (31014 g cm-3) e.o.s. stiffens and subsonic core collapse slows down supersonic core continues and “rebounces”: shock wave and SN explosion (“prompt” scenario) However: unsuccesful ! Shock stalls and eventually recollapses neutrino losses + iron material dissociation “delayed” scenario: shock revival by neutrino energy deposition Revival of a stalled Supernova shock by neutrino heating Radial trajectories of equal mass shells shock wave Shock propagation Hot bubble Shock formation Accretion onto the PNS Supernova ejecta Proto Neutron Star Neutrino sphere From Janka - Wilson, Proc. Univ. Illinois, Meeting on Numerical Astrophysics (1982) - Bethe & Wilson, ApJ 295 (1985) 14 1- D Failed Explosions Mezzacappa et al., PRL 86 (2001) 1935 Rampp & Janka, ApJ 539 (2000) L33 Spherically symmetric simulations, Newtonian and General Relativistic, with the most advanced treatment of neutrino transport do not produce explosions. prompt e burst shock breaks through neutrino sphere: nuclei dissociation protons liberated allow for quick neutronization e p n e e burst (10-2 s) Beyond the shock: proto-neutron star (R~30 Km,) which contracts, deleptonizes and cools via all flavor (anti) neutrino emission (10 s) Supernova Neutrinos: Numerical Neutrino Signal Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216 NC CC Neutrino flux spectra and overall features Neutrinos trapped in the high density neutrino-sphere at the emission surface (R ~ 10-20 Km) T ~ 2<E>/3 ~ GMmN/3R ~ 10 – 20 MeV Emission via diffusion tdiff ~ R2/ ~ GF2 E2 nN ~ 102 cm Total luminosity Etot ~ GM2/R ~ 1053 erg tdiff = O(1 s) Neutrino energy distribution 3 E dL E / T dE 1 e T ~ <E>/3 e <E> ~ 10 –12 MeV e <E> ~ 14 –17 MeV opacity regulated by scattering on (less abundant) protons , , , <E> ~ 24 –27 MeV opacity regulated by neutral current only Fermi-Dirac-like =2 0.8 Maxwell-Boltzmann-like 0.6 L(e) ~ L( e) ~ L(x) ~ L( x) Cross-sections depends on energy; T and density profile 0.4 0.2 1 2 3 Equipartition of flux 4 Time evolution of neutrino signal prompt e burst 1051 erg in #10 msec other flavor (anti)neutrino energy and luminosities raises when shock stalls and matter accretes (100 ms) 10% - 25% of the total luminosity in 0.5 sec Formed protoneutron star cooling 90% -75% of total luminosity SN1987A at Kamiokande and IMB Supernova explosion of Sanduleak-69202 in the Large Magellanic Cloud (50 Kpc) Neutrino observed at Kamiokande II, IMB (water cherenkov) and Baksan (scintillation light) at 7:35:40 UT on 23th february 1987. Optical brightness at 10.38 UT Detection: e p n e KII and IMB e 16 O 16 F e x e x e e p n e Baksan e 16 C 16 N e Time energy analysis (Loredo and Lamb 1995) T(t)=Tc0/(1+t/3c) SN & ICARUS SN explosion rate In our galaxy 7.3 h2 per century (from observations in other galaxies) Large Magellanic Cloud 0.5 per century but record of hystorical SN suggests a larger number A rate of 1 per year requires distances of 15 Mpc (Virgo cluster) (too low signal in ICARUS. See later) Detection tecnique - Elastic scattering Recoil electron direction highly correlated to direction Larger for e (prompt pulse) ( e e ) 9.2 10 45 E ( MeV ) cm 2 ( e e ) 3.8 10 45 E ( MeV ) cm 2 ( , e ) 1.6 10 45 E ( MeV ) cm 2 ( , e ) 1.3 10 45 E ( MeV ) cm 2 e e ICARUS initial physics program e e SN @ d=10Kpc , e dn d ( Ee , E ) N L ( t ) ( E ) dEe dE dt e 2 4 d Ee , e total TMeV 3.5 5 8 8 .6Ktons 4 2 1 1 8 1.2Ktons 8 4 2 2 16 -e capture e 40 Ar e 40 K * super allowed Fermi and GT transitions 40 T MeV 0.6ktons Fermi 11 15 GT 11 30 total 45 Good sensitivity to prompt e burst and to first 100 ms flux K rays 1.2ktons 30 60 90 caveats: no energy dependent sensitivity and energy threshold no oscillation effects (some result by Vissani,Cavanna,Palamara Nurzia: full swap) Similar results in Thompson et al 2002 SNO, SK, LVD SK water Cherenkov detector (32 ktons) 15.4 MeV threshold e flux raises after prompt burst Thompson et al 2002 SNO D2O detector (1 ktons) Eth 2.2MeV x D n p x x D n p x Eth 1.4 MeV x D p pe Eth 4 MeV x D nne Thompson et al 2002 LVD scintillator counters e p e n e C Ne 12 12 e C Be 12 12 expected events: 102 CC x ( x ) C x ( x ) C * 12 12 x ( x )e x ( x )e 10 NC Oscillations (under study) General expectations: 1. Prompt e much harder to observe (reduced x interactions) 2. Harder e flux, due to mixing 3. e , enhances energy transfer from neutrino flux to matter behind the stalled shock Issues to be studied • neutrino fluxes as a diagnostic tool for SN model: prompt e burst, 100 ms shock revival and all flavor neutrino fluxes • ICARUS may be sensible to prompt breakout, O(10) e events, good directionality. • outlook: neutrino oscillations (trigger design) detection efficiency neutrino cross section at 10-80 MeV SN parameters which may be significantly distinguished : e.o.s., neutrino oscillations, density profile, neutrino mass, neutrinosphere parameters L dN A ( Ee , t ) d B ( E , t ' ) NT 2 B 4 d dσ A PBA ( E ) ( E , Ee ) ε(E e ) dE (t t 't )dt ' dEe dEdt Star evolution thermal pressure: negative specific heat Stellar structure degeneracy pressure: positive specific heat - Hydrostatic equilibrium dp M (r ) (r ) G dr r2 - Energy conservation - Energy transfer nucl grav dL(r ) 4 r 2 dr 1 1 e 1 4 r 2 d (aT 4 ) L( r ) 3 dr