Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The imaging problem object imaging optics (lenses, etc.) image MIT 2.71/2.710 Optics 10/27/04 wk8-b-1 The imaging problem Illumination (coherent vs incoherent) object imaging optics (lenses, etc.) free space MIT 2.71/2.710 Optics 10/27/04 wk8-b-2 free space image The imaging problem Illumination (coherent vs incoherent) object image (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-3 The imaging problem object image (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-4 Our approach • Today: – linear shift invariant (LSI) systems in the space/spatial frequency domains – mathematical properties of Fourier transforms • Monday: – free space propagation: Fresnel and Fraunhofer diffraction • Wednesday: – examples of Fraunhofer diffraction: amplitude and phase diffraction gratings – wave description of light propagation through a lens – Fourier transformation and imaging using lenses MIT 2.71/2.710 Optics 10/27/04 wk8-b-5 Spatial filtering MIT 2.71/2.710 Optics 10/27/04 wk8-b-6 Spatial frequency representation space domain 3 sinusoids MIT 2.71/2.710 Optics 10/27/04 wk8-b-7 Fourier domain (aka spatial frequency domain) Spatial frequency removal space domain 2 sinusoids (1 removed) MIT 2.71/2.710 Optics 10/27/04 wk8-b-8 Fourier domain (aka spatial frequency domain) From space to spatial frequency: 2D Fourier analysis Can I express an arbitrary g(x,y) as a superposition of sinusoids? MIT 2.71/2.710 Optics 10/27/04 wk8-b-9 ... etc. ... Spatial frequency representation space domain g(x,y) MIT 2.71/2.710 Optics 10/27/04 wk8-b-10 Fourier domain (aka spatial frequency domain) Low-pass filtering removed high-frequency content space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-11 Fourier domain (aka spatial frequency domain) Band-pass filtering removed high-and low-frequency content space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-12 Fourier domain (aka spatial frequency domain) Example: optical lithography Original nested Ls original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-13 mild low-pass filtering Notice: (i) blurring at the edges (ii) ringing Example: optical lithography Original nested Ls original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-14 severe low-pass filtering Notice: (i) blurring at the edges (ii) ringing The 2D Fourier integral (aka inverse Fourier transform) superposition sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids MIT 2.71/2.710 Optics 10/27/04 wk8-b-15 The 2D Fourier integral The complex weight coefficients G(u,v), Aka Fourier transform of g(x,y) are calculated from the integral (1D so we can draw it easily ... ) MIT 2.71/2.710 Optics 10/27/04 wk8-b-16 2D Fourier transform pairs Image removed due to copyright concerns MIT 2.71/2.710 Optics 10/27/04 wk8-b-17 (from Goodman, Introduction to Fourier Optics, page 14) Space and spatial frequency representations SPACE DOMAIN 2D Fourier transform 2D Fourier integral aka SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/27/04 wk8-b-18 inverse 2D Fourier transform Fourier transform properties /1 •Fourier transforms and the delta function •Linearity of Fourier transforms if and then for any pair of complex numbers MIT 2.71/2.710 Optics 10/27/04 wk8-b-19 Fourier transform properties /2 Let Shift theorem (space →frequency) Shift theorem (frequency →space) Scaling theorem MIT 2.71/2.710 Optics 10/27/04 wk8-b-20 Fourier transform properties /3 Let and Let Convolution theorem (space →frequency) Let Convolution theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-21 Fourier transform properties /4 Let and Let Correlation theorem (space →frequency) Let Correlation theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-22 2D linear shift invariant systems output input transform multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-23 Inverse Fourier transform Fourier convolution with impulse response 2D linear shift invariant systems SPACE DOMAIN convolution with impulse response transform SPATIAL FREQUENCY DOMAIN Inverse Fourier multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-24 output transform Fourier input 2D linear shift invariant systems convolution with impulse response transform multiplication with transfer function pair Inverse Fourier are MIT 2.71/2.710 Optics 10/27/04 wk8-b-25 output transform Fourier input Sampling space and frequency pixel size space domain field size Nyquist relationships: MIT 2.71/2.710 Optics 10/27/04 wk8-b-26 frequency resolution spatial frequency domain The Space–Bandwidth Product Nyquist relationships: from space → spatial frequency domain: from spatial frequency → space domain: : 1D Space–Bandwidth Product (SBP) aka number of pixels in the space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-27 SBP: example space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-28 Fourier domain (aka spatial frequency domain)