Download Van der Klis 2006

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
QPOs,准周期振荡
in Black Hole,Neutron Star X-ray Sources:
X-ray bursts, accreting-powered pulsars
Einstein’s Relativity in Strong Gravitation
张承民, 尹红星
National Astronomical Observatories
Chinese Academy of Sciences, Beijing
OUTLINE OF TALK







Introduction of RXTE
Black Hole (BH) and Neutron Star (NS) in
Low Mass X-ray Binary (LMXB)
KHz Quasi Periodic Oscillation (QPO)
Millisecond accreting-powered X-ray Pulsar
Type-I X-ray Burst Oscillation
QPOs of NS/BH X-ray Sources
Theoretical Mechanisms---Strong Gravity
Further Expectation
Binary X-ray Sources
Normal Star + Compact Star
10,000 lyr, 300Hz/450Hz
Micro-quasar, Radio jet
7 solar mass/optical
QPO frequencies discovered by RXTE
1996—2006, reviewed by van der Klis 2005, 06
 NBO, ~5 Hz
 HBO, ~20-70 Hz
 Hundred, ~100 Hz
 kHz, ~1000-Hz
 Burst oscillation, ~300 Hz
 Spin frequency, ~300 Hz
 Low, high QPO, ~0.1 Hz
 Etc.
QPO: Quasi
Periodic Oscillation
准周期振荡
Atoll and Z Sources --- LMXB
~1% Eddington Accretion
Accretion rate direction
CCD
~Eddington Accretion
Discovery: typical twin KHZ QPOs
Separation ~300 Hz
Typically: Twin KHz QPO
Upper ν2 = 1000 (Hz)
Lower ν1 = 700 (Hz)
18/25 sources
Sco x-1, van der Klis et al 1997
QPO v.s. Accretion rate relation
QPO frequency increases with
the accretion rate
SCO X-1, Van der Klis, 2005, 06
QPO轮廓随吸积率变宽/低,消失
KHz QPO Data,
Atoll sources
最大值Max:νmax=1329 Hz,
van Straaten 2000
min: ~200 Hz
平均值/Distribution of kHz QPOs
:QPO (Atoll) ~ QPO(Z)
Zhang et al 2006; 原因?
kHz QPOs of Z Sources
Difference of twin kHz QPOs = const?
Beat model by Miller, Lamb & Psaltis 1998
Saturation of kHz QPO frequency ?
4U1820-30, NASA
W. Zhang et al, 1998
Kaaret, et al 1999
Swank 2004; Miller 2004
BH/ISCO: 3 Schwarzschild radius
Innermost stable circular orbit
NS/Surface: star radius, hard surface
Parallel Line Phenomenon
kHz QPO-luminosity relation
Similarity/Homogeneous ?
Among the different sources, same
source at the different time
kHz QPO v.s. Count rate
kHz QPO corresponds to
the position in CCD,
to the accretion rate Mdot;
QPO ~ Mdot, 1/B
B ~ Mdot, proportional
Cheng & Zhang, 1998/2000
Zhang & Kojima, 2006
Accreting millisecond X-ray pulsar
--- SAX J1808.4-3658 (7 sources)
Wijnands and van der Klis, 1998 Nature
Wijnands et al 2003 Nature
4 sources by Markwardt et al. 2002a,
2003a, 2003b, Galloway et al. 2002
SAXJ 1808.4-3658
Twin kHz QPOs
700 Hz, 500 Hz
Burst/spin: 401 Hz
See, Wijnands 2006
XTE 1807, kHz QPO,
191 Hz,
Linares et al. 2005
F. Zhang et al. 2006
Burst frequency ~ spin frequency ?, 2003
IGR J00291+5934
598.88 Hz, Markwardt
2004, 7 MSP sources
Spectrum of Type-I X-ray Burst frequency
4U1702-43, van der Klis 2006;
Strohmayer and Bildsten 2003
Type-I X-ray Burst
 Type-I X-ray Burst, Lewin et al 1995/Bildsten 1998
 Thermonuclear reaction on accreting NS surface (T/P, spot)
 Burst rise time:
1 second
 Burst decay time: 10-100 second
 Total energy: 1039-40 erg. Eddington luminosity !
4U1728-34, (363 Hz) Strohmayer et al 1996
362.5 Hz --- 363.9 Hz, in 10 second
Burst Oscillations
On the burst frequency
 Burst frequency increases ~ 2 Hz, drift.
 Decreasing is discovered
 From hot spot on neutron star
 kHz QPO separation ~ burst/spin frequency
Burst and Spin frequency
kHz QPO separation=195 Hz/(spin=401 Hz)
Burst and Spin frequency are similar
11 burst sources, Muno et al 2004
7 X-ray pulsars, Wijnands 2004; Chakrabarty 2004
11 burst sources, Muno 2004
3rd kHz QPO ?
25 kHz QPO 源
Low frequency QPO---kHz QPO 关系
Psaltis et al 1998, 1999
Belloni et al 2002; 2005
Low frequency QPO< 100 Hz
FBO/NBO = 6-20 (Hz)
HBO = 15-70 (Hz)
Empirical Relation
νHBO = 50. (Hz)(ν2 /1000Hz)1.9-2.0
νHBO = 42. (Hz) (ν1/500Hz)0.95-1.05
νqpo = 10. (Hz) (ν1/500Hz)
ν1 = 700. (Hz)(ν2 /1000Hz)1.9-2.0
Twin kHz QPO
relations
ν1 = ~700. (Hz)(ν2 /1000Hz)b
b ~ 1.6 Atoll Source 4U1728
b ~ 1.8 Z Source Sco X-1
Zhang et al. 2006
Twin kHz QPO distribution
Twin kHz QPO distribution
Low-high frequency QPO 关系
Neutron stars
?
Black holes
White dwarfs, Cvs
Zhang 2005: Model
Warner 2006; Warner & Woudt 2004;
Mauche 2002
+ 27 CVs, 5 magnitude orders in QPOs
Black Hole High Frequency QPOs
 HFQPO: 40-450 (Hz)
 Constant (stable) in
frequency Mass/Spin/
Luminosity
 Pair frequency relation 3:2
 Frequency-Mass relation: 1/M
 7 BH sources, van der Klis 2006
 Jets like Galactic BHs
(McClintock & Remillard 2003)
Different from those of NS’s
Magnetosphere-disk instability noise:
mechanism:?
GRO J1655-40, XTE J1550-564
XTE 1650-5000, 4U1630-47
XTE 1859-226, H 1743-322
GRS 1915+105, 4/7 Sources
Van der Klis 2006
Genzel 2003; Auschenbach
2004; GC QPOs, 3:2
νk= (1/2π)(GM/r3)1/2
= (c/2πr) (Rs/2r)1/2
νk (ISCO) = 2.2 (kHz) (M/M‫ )סּ‬-1
Miller, et al 1998
High Frequency QPOs in Black Hole LMXBs
Name
BH Mass(Msun)
HF QPO (Hz)
References
GRO J1655-40
~6
300,450
1,2
XTE J1550-564
~10
184,276
188,249~276
3,4
5
GRS 1915+105
~14
41,67
113,165
328
165
6
7(?)
8(?)
9
H 1743-322
~
160,240
166,242
10
11
XTE J1859+226
~9
150~200
12
4U 1630-472
~
184
100~300
8
13
XTE J1650-500
~
110~270
14
240 H 1743-322[10]
160
XTE J1650-500[14]
250
(Astro-ph/0408402[8])
A comparison between high-frequency QPOs in BH LMXBs and those
in NS LMXBs
QPOs in NS
LMXBs
QPOs in BH
LMXBs
Twin kHz QPOs
Yes
Yes
Ratio
Not a constant
~3:2
Spectra index
Soft
Hard, saturation
Pulsations
Yes
No
Type I X-ray bursts
Yes
No
1/M scaling
No?
yes
Changes
Increase with Lx
Relatively stable
STELLAR Black Hole—Micro-quasar
GRS 1915+105
10,000 lyr, 300Hz:450Hz=2:3
41:67 Hz, 33 solar mass
Microquasar, Radio jet
7 solar mass/optical
QPO and Break Frequency
Theoretical Consideration
Accretion Flow around NS/BH
Hard surface ?
 Strong Gravity:
 Schwarzschild Radius: Rs=2GM/c2
 Innermost Stable Circular Orbit RIsco= 3Rs
 Strong Magnetic:
 108-9 Gauss (Atoll, Z-sources)
 Beat Model:
 Kepler Frequency
 Difference to Spin frequency
QPO Models
Miller, Lamb & Psaltis ’ Beat Model, developed from
Alpar & Shaham 1985 Nature ; Lamb et al 1985 Nature
Abramovicz and cooperators ’ Model
non-linear resonance between modes of
accretion disk oscillations
HFQPO: Stella black hole QPO, 3:2 relation
Wang, DX, 2003, positions
Titarchuk and cooperators ’ Model
Relativistic precession model
by Stella & Vietri 1999
transition layer formed between a NS surface
and the inner edge of a Keplerian disk,
QPO: magnetoacoustic wave (MAW),
Keplerian frequency.
Low-high frequency relation 0.08 ratio
Theoretical Models
What modulate X-ray Flux ?
Why quasi periodic, not periodic ?
Parameters: M/R/Spin, B?--Z/Atoll
Beat Model (HBO),
ν =ν - ν
Alpar, M., Shaham, J., 1985, Nature
HBO
ν
ν
kepler
spin
Kepler
≈ r-3/2 is the Kepler Frequency of the orbit
spin
Constant, is the spin Frequency of the star
r ~ 1/Mdot ,
νHBO ~ Mdot
Beat Model for KHz QPO
Miller, Lamb, Psaltis 1998; Strohmayer et al 1996
ν2 = νkepler
Lamb & Miller 2003
ν1 = νkepler - νspin
∆ν = ν2
- ν1 = νspin
…Constant
X-射线源准周期振荡QPO, Beat ?
SAXJ 1808, Wijnands, Nat, 2003
XTEJ 1807, Zhang, F, Qu JL, Zhang CM,
Li TP, Chen, W. , 2006
间隔常数?NO!
拍模型预言:间隔常数=自旋
Alpar和Shaham,1985,Nature。
Lamb et al 1985, Nature。
Miller et al 1998, ApJ。
Einstein’s Prediction:
Perihelion Motion of Orbit
Perihelion precession of Mercury orbit = 43”
/century, near NS, ~10^16 times large
Neutron Star Orbit
N. Copernicus
ISCO Saturation
Einstein’s General Relativity: Perihelion precession
Precession Model for KHz QPO, Stella and Vietri, 1999
ν2 = νkepler
ν1 = νprecession
∆ν = ν2
= ν2 [1 – (1 – 3Rs/r)1/2]
- ν1 is not constant
Problems:
1. Vacuum
2. Circular orbit
Theoretical model
3. Test particle
4. Predicted 2 M⊙
5. 30 sources, NS mass ~ 1.4
solar mass
Stella and Vietrie, 1999, Precession model
Lense-Thirring Precession
Zhang, SN et al 1997;
Cui et al 1998:
BH precession ?
L.Stella, M.Vietri, 1998
From Einstein GR, frame dragging was first quantitatively
stated by W. Lense and H. Thirring in 1918, which is also
referred to as the Lense-Thirring effect
Gravity Probe B, Gyroscope experiment, Stanford U, led by F.Everit, 2003
Gravitomagnetism Conf., 2nd Fairbank W., Rome U, organized by R.Ruffini, 1998
Book “Gravitation and Inertia” by Ciufolini and Wheeler, 1995
Problems ?
Vacuum ?
Kerr rotation ?
Magnetic Field ?
Inner Accretion Disk ?
Similarity: common parameter: accretion rate/radius
Alfven wave oscillation MODEL
(in Schwarzschild spacetime):
Zhang 2004; Li & Zhang 2005
Keplerian Orbital frequency resonance
MHD Alfven wave Oscillation in the orbit
ν2 = 1850 (Hz) A X3/2
ν1 = ν 2X (1- (1-X)1/2)1/2
A=m1/2/R63/2; X=R/r,
m: Ns mass in solar mass
R6 is NS radius in 10^6 cm
Constrain on Star EOS , mass & radius
Kerr spacetime ?
NS
Mass in solar mass
NS radius (km)
CN1/CN2: normal neutron matter, CS1/CS2: Strange matter
CPC: core becomes Bose-Einstein condensate of pions
10年RXTE探测总结
观测,进展较大,QPO关系明确
理论,进展缓慢,很多模型?
强引力广义相对论验证
物理实验室
开普勒运动
质量
近星点进动
半径
LT 进动/引力磁
QPO机制?
引力红移
数据处理?
黑洞/Kerr 时空
引力波
光线弯曲
中子星结构检验核物理
新物理?
核物态(中子/夸克)
磁场
旋转
吸积流动
References:
1: Remillard, R. A. et al. 1999, ApJ, 522, 397
2: Strohmayer, T. E. 2001, ApJ, 552, L49
3: Remillard, R. A. et al. 1999, ApJ, 517, L127
4: Remillard, R. A. et al. 2002, ApJ, 580, 1030
5: Miller, J. M. et al. 2001, ApJ, 563, 928
6: Strohmayer, T. E. 2001, ApJ, 554, L169
7: Remillard, R. A. 2003, abstract HEAD,7,3003
8: Remillard, R. A. 2002 (astro-ph/0208402)
9: Belloni, T. et al. 2006 (astro-ph/0603210)
10: Homan, J. et al. 2005, ApJ, 623, 383
11: Remillard, R. A. et al. 2006, ApJ, 637, 1002
12: Markwardt, C. 2001, ApSSS, 276,209
13: Klein-Wolt, M. et al. 2004, NuPhS, 132, 381
14: Homan, J. et al. 2003, ApJ, 586, 1262
Related documents