Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2007 봄학기 Nonlinear Optics (비선형 광학) 담당 교수 : 오 차 환 교 재 : A. Yariv, Optical Electronics in Modern Communications, 5th Ed., Oxford university Press, 1997 부교재 : R. W. Boyd, Nonlinear Optics, Academic Press, 1992 A. Yariv, P. Yeh, Optical waves in Crystals, John Wiley & Sons, 1984 Nonlinear Optics Lab. Hanyang Univ. Chapter 1. Electromagnetic Theory 1.0 Introduction Propagation of plane, single-frequency electromagnetic waves in - Homogeneous isotropic media - Anisotropic crystal media 1.1 Complex-Function Formalism Expression for the sinusoidally varying time functions ; |A| i (t a ) i (t a ) a(t )|A|cos(t a ) [e e ]Re[ Aei t ], 2 i where A|A|e a ?? i t Typical expression ; a(t ) Ae Nonlinear Optics Lab. Hanyang Univ. Distinction between the real and complex forms d 1) a(t )|A|sin( t a )iAeit dt |A||B| 2) a (t )b(t ) [cos( 2t a b )cos(a b )] 2 |A||B|ei ( 2ta b ) * Time averaging of sinusoidal products T 1 |A||B| a(t )b(t ) |A|cos(t a )|B|cos(t b )dt cos(a b ) T0 2 1 Re( AB*) 2 Nonlinear Optics Lab. Hanyang Univ. 1.2 Considerations of Energy and Power in Electromagnetic Field Maxwell’s curl equations (in MKS units) ; d h i t b e [ d 0ep , b0 (hm) ] t 0 eh ei (ee)e p 2 t t 0 h e (h h) 0h m 2 t t Vector identity ; ( AB)BAA B 0 p 0 m - (eh) ei ee h h e 0h t 2 2 t t Nonlinear Optics Lab. Hanyang Univ. v s n Divergence theorem ; (A) dv A n da v s 0 p 0 m (eh) dv (eh)n da e i ee hh e 0h dv v s v 2 t t t 2 Total power flow into the volume bounded by s : Poynting theorem Power expended by the field on the moving charges Rate of increase of the vacuum electromagnetic stored energy Power per unit volume expended by the field on electric and magnetic dipoles Nonlinear Optics Lab. Hanyang Univ. Dipolar dissipation in harmonic fields The average power per unit volume expended by the field on the medium electric polarization ; power p e volume t Assume, field and polarization are parallel to each other e(t )Re[ Eeit ] p(t )Re[ Peit ], where P 0 e E power 1 Re[Eeiωt ]Re[iωωeiωt ] Re[ i 0 e EE*] 0 |E|2 Re( i e ) volume 2 2 Put, e e 'i e " " power 0 e |E|2 volume 2 : Isotropic media 0 Re( i ij Ei *E j ) 2 i, j : Anisotropic media Nonlinear Optics Lab. Hanyang Univ. Ex) single localized electric dipole, μ (ex) power e t DF x x0 cos(t e ) ex E0 cost Let, position of electron : electric field : power DF E0 cos t [ex0 cos(t e )] e x0 E0 cos t sin( t e ) t 1) e 2) e 2 2 : power e x DF 0 : power e x DF E0 cos 2 t 0 : The dipole(electron) continually loses power to the field E0 cos 2 t : The field continually gives power to the dipole Power exchange between the field and medium via dipole interaction Nonlinear Optics Lab. Hanyang Univ. 1.3 Wave Propagation in Isotropic Media Electromagnetic plane wave propagating along the z-axis in homogeneous, isotropic, ( , : scalar constants) and lossless media Put, e ex u x , h hy u y hy hy ex e , ε x z t z t General solutions : 2 2 hy 2 ex 2 ex hy , ε 2 2 2 z t z t 1 i (tkz ) i (tkz ) Ex e ex ( z,t ) E x ei (t kz ) E x ei (t kz ) , hy ( z,t ) Ex e c 1 0 k ε n 2 c * wavelength : 2 k E x * Relative amplitude : H y , where * Phase velocity : c Nonlinear Optics Lab. Hanyang Univ. Power flow in harmonic fields Intensity (average power per unit area carried in the propagation direction by a wave) : 1 I |eh|ex hy Re[ E x H y *] 2 |Ex |2 |Ex |2 1 ikz ikz ikz ikz Re [ Ex e Ex e ][( Ex )*e ( Ex )*e ] (1.3-17) I 2 2 2 Electromagnetic energy density : E 2 2 1 1 ex hy Re{ Ex Ex *} Re{H y H y *} V 2 2 22 22 E 2 2 1 2 2 ex hy {| Ex | |Ex | } V 2 2 2 I 1 2 2 1 |Ex | / |Ex | c For positive traveling wave : E/V 2 2 (1.3-17) 1 I c |E x |2 [ W/m 2 ] 2 Nonlinear Optics Lab. Hanyang Univ. 1.4 Wave Propagation in Crystals-The Index Ellipsoid In general, the induced polarization is related to the electric field as xx xy xz P 0 E, where yx yy yz zy zz : electric susceptibility tensor zx Px ' 0 ( 1'1' E x ' 1'2' E y ' 1'3' Ez ' ) Py ' 0 ( 2'1' E x ' 2'2' E y ' 2'3' Ez ' ) Pz ' 0 ( 3'1' Ex ' 3'2' E y ' 3'3' Ez ' ) If we choose the principal axes, x, y, z (Diagonalization) Px 0 11E x Py 0 22 E y Pz 0 33 E z Dx 11E x D y 22 E y Dz 33 E z 11 0 (1 11 ) where 22 0 (1 22 ) (1 ) 33 33 0 Nonlinear Optics Lab. n / 0 Hanyang Univ. Secular equation For a monochromatic plane wave ; E E0e i ( t k r ) , H H 0e i ( t k r ) 2E From Maxwell’s curl equations, E 2 t k (k E) 2 E0 εx In principal coordinate, 0 0 0 εy 0 0 0 ε z 2 ε x k y2 k z2 E x kxk y kxkz 2 2 2 k ykx ε y k x k z k ykz E y 0 2 2 2 k k k k ε k k E z x z y z x y z Nonlinear Optics Lab. Hanyang Univ. Simple example (k x k , k y k z 0) : wave propagating along the x-axis 2 ε x E x 0 2 2 ( ε k ) E y 0 y 2 2 ( ε z k ) E z 0 E x 0 : transverse wave !! k ε y , and E z 0 k ε z , and E y 0 For nontrivial solution to exist, Det=0 ; 2 ε x k y2 k z2 k ykx kxk y 2 ε y k x2 k z2 kxkz k ykz kzkx kzk y 2 ε z k x2 k y2 0 Nonlinear Optics Lab. Hanyang Univ. Normal surface Simple example ( k z 0) ky nz /c n k sˆ , determinant equation c nx /c n y / c nx /c n y / c nz /c kx Optic axis 2 2 n3 2 2 2 2 2 n n1 2 2 2 k x k y k y k x k x k y 0 c c c n k k 3 c : circle 2 x kz 2 2 y k y2 k x2 1 n n 2 1 c c : ellipse Nonlinear Optics Lab. Hanyang Univ. Wave propagation in anisotropic media 2D Maxwell equations E 2 t i ( t k r ) , H H 0e n sˆ Define the unit vector along the propagation direction as ŝ , ( k c n2 2 ( sˆsˆE)D c E E0e i ( t k r ) : wave vector) n2 D 2 [E-sˆ( sˆE)] c Put, =1, and ABCB( AC)C( AB) Taking scalar product, ŝ on both sides : n2 sˆD 2 [ sˆE-( sˆsˆ)( sˆE)]0 c S (poynting vector) k : propagation direction is perpendicular to the electric displacement vector not to the electric field vector Nonlinear Optics Lab. D E Hanyang Univ. Index ellipsoid Energy density : 1 U e ij Ei E j 2 The surface of constant energy density in D space : 2 Dx2 Dy Dz2 2U e x y z D/ 2U e r x2 y2 z2 1 x / 0 y / 0 z / 0 or x2 y2 z 2 2 2 1 2 nx n y nz : Index ellipsoid Nonlinear Optics Lab. Hanyang Univ. Classification of anisotropic media 1) Isotropic : nx n y nz ex) CdTe, NaCl, Diamond, GaAs, Glass, … 2) Uniaxial : nx n y nz (nz ne : extraordin ary,nx n0: ordinary) Fast/Slow axis (1) Positive uniaxial : nz nx ex) Ice, Quartz, ZnS, … (2) Negative uniaxial : nz nx ex) KDP, ADP, LiIO3, LiNbO3, BBO, … 3) Biaxial : nx n y nz ex) LBO, Mica, NaNO2, … Nonlinear Optics Lab. Hanyang Univ. Example of index ellipsoid (positive uniaxial) x2 y2 z 2 2 1 2 n0 ne z (0,0,ne ) ŝ propagation direction (0,ne cos ,ne sin ) A 0 (0,n0 ,0) y B x (n0 ,0,0) Nonlinear Optics Lab. Hanyang Univ. Intersection of the index ellipsoid z A y2 z2 2 1 2 n0 ne ŝ ne2 ( ) z 2 y 2 ne ( ) n0 0 y z ne ( )sin , yne ( )cos cos 2 sin 2 1 2 2 2 n0 ne ne ( ) Birefringence : |ne ( )n0 | |ne (0)n0 |0, |ne (90)n0 |ne n0 Nonlinear Optics Lab. Hanyang Univ. Normal index surface : The surface in which the distance of a given point from the origin is equal to the index of refraction of a wave propagating along this direction. 1) Positive uniaxial (ne>no) 2) negative uniaxial (ne<no) 3) biaxial ( nx n y nz ) n0 z z ny z y y n0 ne ne y nx n0 n0 Nonlinear Optics Lab. Hanyang Univ. nz 1.5 Jones Calculus and Its Application in Optical Systems with Birefringence Crystals Jones Calculus (1940, R.C. Jones) : - The state of polarization is represented by a two-component vector - Each optical element is represented by a 2 x 2 matrix. - The overall transfer matrix for the whole system is obtained by multiplying all the individual element matrices. - The polarization state of the transmitted light is computed by multiplying the vector representing the input beam by the overall matrix. Examples) Vx - Polarization state : V V y 1 0 - Linear polarizer (horizontal) : 0 0 ei x - Relative phase changer : 0 0 i y e Report) matrix expressions - Linear polarizers (horizontal, vertical) - Phase retarder - Quarter wave plate (fast horizontel, vertical) - Half wave plate Nonlinear Optics Lab. Hanyang Univ. Retardation plate (wave plate) : Polarization-state converter (transformer) Polarization state of incident beam : Vx V where, Vx , Vy : complex field amplitudes V y along x and y s, f axes components : Vs cos Vf sin sin Vx Vx R( ) cos Vy V y Polarization state of the emerging beam : V Vs exp ins l 0 s c V 0 exp inf l Vf f c Nonlinear Optics Lab. Hanyang Univ. Define, l - Difference of the phase delays : (ns nf ) c 1 l - Mean absolute phase change : (ns nf ) Vs i e e 0 Vf i 2 V 0 s i V e 2 f 2 Polarization state of the emerging beam in the xy coordinate system : Vx cos V sin y sin Vs cos Vf c Vx Vx R( )W0 R( ) V V y y cos where, R( ) sin Nonlinear Optics Lab. i / 2 0 sin i e , W0 e i / 2 0 e cos Hanyang Univ. Transfer matrix for a retardation plate (wave plate) W ( , ) W R( )W0 R( ) e i ( / 2) cos 2 ei ( / 2) sin 2 i sin sin( 2 ) 2 i sin sin( 2 ) 2 e i ( / 2) sin 2 ei ( / 2) cos 2 Transfer matrix is a unitary ( W W 1 ) : Physical properties are invariant under unitary transformation => If the polarization states of two beams are mutually orthogonal, they will remain orthogonal after passing through an arbitrary wave plate. Nonlinear Optics Lab. Hanyang Univ. Ex) Half wave plate 0 , /4, incident beam : V 1 (1.511) W e i ( /2) cos 2 /4ei ( /2) sin 2 /4 isin sin( /2) 2 isin sin( /2) 2 e i ( /2) sin 2 /4ei ( /2) cos 2 /4 0 i i 0 0 i 0 i 1 i : x-polarized beam V ' i 0 1 0 0 Report : Problem 1.7 Nonlinear Optics Lab. Hanyang Univ. Ex) Quarter wave plate 0 /2, /4, incident beam : V : y-pol. 1 1 i 1 (1.511) W 2 i V ' 1 1 1 i 0 1 i i 1 2 i 1 1 2 1 2i : left circularly polarized beam 1 /2, /4, incident beam : V : x-pol. 0 V ' 1 1 i 1 1 1 2 i 1 0 2 i : right circularly polarized beam Nonlinear Optics Lab. Hanyang Univ. Intensity transmission In many cases, we need to determine the transmitted intensity, since the combination of retardation plates and polarizers is often used to control or modulate the transmitted optical intensity. Vx V y Incident beam intensity : V Output beam intensity : Vx V Vy I ' V V Vx V y Vx V y 2 2 I VV Vx Vy ' 2 x 2 2 Transmissivity : 2 2 ' 2 y Nonlinear Optics Lab. Hanyang Univ. Ex) A birefringent plate sandwiched between parallel polarizers d 2 (ne no ) , /4 cos 0 0 2 V ' 0 1 isin 2 isin 0 0 2 1 cos cos 2 2 (ne no )d I 'cos 2 cos 2 2 : fn. of d and Ex) A birefringent plate sandwiched between a pair of crossed polarizers cos 1 0 2 V ' 0 0 isin 2 isin 0 2 i sin 1 2 cos 0 2 (ne no )d I 'sin 2 Nonlinear Optics Lab. Hanyang Univ. Circular polarization representation It is often more convenient to express the field in terms of “basis” vectors that are circularly polarized ; 1 0 CCW: and CW: 0 1 Right circularly polarized : constitute a complete set that can be used to describe a field of arbitrary polarization. Left circularly polarized Circular representation : 1 0 V V V V 0 1 V Rectangular representation : 1 0 Vx V Vx Vy 0 1 V y Nonlinear Optics Lab. Hanyang Univ. Transformation Vx V 1 1 i Vx T V V 2 1 i Vy y Vx 1 1 V V V i i V S V y examples) V 1 i 1 1 V 1 i 0 1 Vx 1 1 0 1 V i i 1 i y Report : 1 ? 0 ? Nonlinear Optics Lab. 0 ? 1 ? 1 ? 1 ? Hanyang Univ. Faraday rotation In certain optical materials containing magnetic atoms or ions, the two counter-rotating, circularly-polarized modes have different indices of refraction when an external magnetic field is applied along the beam propagation direction. This difference is due to the fact that the individual atomic magnetic moments process in a unique sense about the z-axis (magnetic field direction) and thus interact differently with the two counter-rotating modes. D E i 0 BE V ( z ) V (0) i ( / c ) n z 0 i ( / c ) n z e e V ( z ) 0 V (0) e ( i / 2 )( ) e (i / 2 )( ) 0 V (0) ( i / 2 )( ) V ( 0 ) e 0 Nonlinear Optics Lab. Hanyang Univ. Ignoring the prefactor, exp[-(i/2)(++-], i V ( z ) e F ( z ) V ( z ) 0 0 e i F ( z ) V (0) V (0) 1 (n n ) z 2 2c Faraday rotation angle where, ( z ) ( ) F Why (Faraday) rotation angle ? i F ( z ) Vx ( z ) e 1 In rectangular representation, V ( z ) T 0 y cos F sin F Vx (0) T i F ( z ) V ( 0 ) e y sin F Vx (0) cos F Vy (0) 0 Vx (0) R( F ) V ( 0 ) y Nonlinear Optics Lab. Hanyang Univ. Basic difference between propagation in a magnetic medium and in a dielectric birefringent medium : CW for +z CW for +z B CW for -z CCW for -z <dielectric birefringent medium> <magnetic medium> Report : proof by calculating Jones matrix. Nonlinear Optics Lab. Hanyang Univ. Optical isolator Nonlinear Optics Lab. Hanyang Univ.