Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 2. The Propagation of Rays and Beams
2.0 Introduction
Propagation of Ray through optical element : Ray (transfer) matrix
Gaussian beam propagation
2.1 Lens Waveguide
A ray can be uniquely defined by its distance from the axis (r) and its slope (r’=dr/dz).
r’=dr/dz
r
r ( z)
r
r '( z )
z
Nonlinear Optics Lab.
Hanyang Univ.
Paraxial ray passing through a thin lens of focal length f
rout rin
r ' out r ' in
r ' in
f
1
1
r 'out
f
rout
0 rin
1 r 'in
: Ray matrix for a thin lens
Report) Derivation of ray matrices
in Table 2-1
Nonlinear Optics Lab.
Hanyang Univ.
Table 2-1 Ray Matrices
Nonlinear Optics Lab.
Hanyang Univ.
Nonlinear Optics Lab.
Hanyang Univ.
Biperiodic lens sequence (f1, f2, d)
rs 1
r' s 1
1
d
1
1 (1 d ) 1
f1
f1
f2
1
d
f2
r ' out
1
1
f
d
rin
d
(1 ) r ' in
f
rs
d
(1 ) r ' s
f2
d d (1
d
)
f2
rs
1 1
d
d
d
d
(1 ) (1 )(1 ) r 's
f1 f 2
f1
f1
f1
f2
In equation form of
rout
d
rs 1 Ars Br ' s
r ' s 1 Crs Dr ' s
1 1 d
C 1
f 1 f 2 f 1
d
Bd (2 ) D d 1 d 1 d
f 1 f 2
f2
f
1
d
A1
f2
Nonlinear Optics Lab.
Hanyang Univ.
(2.1-5)
1
r 's rs 1 Ars ,
B
r' s 1
1
rs 2 Ars 1
B
ABCD1 (actually for all elements)
rs 22brs 1rs 0
d d
1
d2
where, b ( A D)1
2
f
2
f
1
2
f
1
f
2
trial solution : rs r0 eisq
e 2iq 2beiq 1 0
eiq bi 1b 2 e i
where,
cos b
general solution :
rs rmax sin( s )
Nonlinear Optics Lab.
Hanyang Univ.
Stability condition
: The condition that the ray radius oscillates as a function of the cell number s
between rmax and –rmax.
: is real
b 1
d d
d2
1 1
1
f 2 f1 2f1f 2
d d
1
1
0 1
2 f1 2 f 2
Identical-lens waveguide (f, f, d)
1
d
A1, Bd , C , D1
f
f
d
cos b1
2f
Stability condition : 0 d 4 f
Nonlinear Optics Lab.
Hanyang Univ.
2.2 Propagation of Rays Between Mirrors
f R / 2!
xn xmax sin( n x )
yn ymax sin( n y )
stability condition :
2 2l
(, l : integers)
example) 2, l=1 =/2 cos = b = 1-d/2f = 0
d 2 f (symmetric confocal)
rn rmax sin( n /2 )
Nonlinear Optics Lab.
Hanyang Univ.
2.3 Rays in Lenslike Media
Lenses : optical path across them is a quadratic function of the distance r from the z axis ;
x2 y 2
ER ( x, y) EL ( x, y) exp ik
2
f
phase shift
Index of refraction of lenslike medium :
k
n( x, y ) n0 1 2 ( x 2 y 2 )
2k
<Differential equation for ray propagation>
wave front : const
r
s
0
E (r ) Eˆ (r )e ik0 ( r )
where, (r)n( ŝr)
ray path
Nonlinear Optics Lab.
: optical path
Hanyang Univ.
i) ŝ // , |ŝ|1
ii) Maxwell equations : Ĥ(r) Ê(r) 0
Ê(r)- Ĥ(r) 0
Ê(r) 0
Ĥ(r) 0
n sˆ
ˆ
s
dr
ds
(Ê(r) ) Ê(r)( ) Ê(r) 0
1
2
if =1, ( ) 2 n 2
That is, | |n
dr
ds
d dr d
dr
1
1
1
(n ) ( ) ( ) ( ) [( ) 2 ] n 2
ds ds ds
ds
n
2n
2n
So, n
d dr
(n )n : Differential equation for ray propagation, (2.3-3)
ds ds
Nonlinear Optics Lab.
Hanyang Univ.
For paraxial rays,
d
d
ds dz
d 2 r k2
r 0
2
dz k
k
k
k
r ( z ) cos 2 z r0
sin 2 z r '0
k2
k
k
k
k
k
r ' ( z ) 2 sin 2 z r0 cos 2 z r '0
k
k
k
Focusing distance from the exit plane for the parallel rays : h
1
n0
k
k
cot 2 l
k2
k
Report) Proof
Nonlinear Optics Lab.
Hanyang Univ.
2.4 Wave Equation in Quadratic Index Media
Gaussian beam ?
Maxwell’s curl equations (isotrpic, charge free medium)
E
H
H
, E
t
t
Put,
2E
=> E 2 0 : Scalar wave equation
t
2
E ( x, y,z,t )E ( x,y,z)eit (monochromatic wave)
=> Helmholtz equation : 2 E k 2 (r ) E 0
i ( r )
where, k (r ) 1
2
2
0 : loss medium
0 : gain medium
We limit our derivation to the case in which k2(r) is given by
k 2 (r , , z )k 2 kk2 r 2
2 2 1 2
2 2
z r r r z 2
2
i (0)
where, k 2 k 2 (0) 2 (0) 1
(0)
2
t
Nonlinear Optics Lab.
Hanyang Univ.
Assume, E0 ( x, y, z )e ikz
& slow varying approximation
2 2
2
2
ik
kk
r
0
=> 2
2
2
z
x y
kr2
Put, exp{i[ p( z )
]} , r ( x 2 y 2 )1/ 2
2q( z )
=>
1 d 1 k2
dp i
(
)
0
,
2
q dz q k
dz q
Nonlinear Optics Lab.
Hanyang Univ.
2.5 Gaussian Beams in a Homogeneous Medium
In a homogeneous medium, k2 0
1 d 1
2 ( )0 => q z q0
q dz q
Otherwise, field cannot be a form of beam.
q is must be a complex ! => Assume, q0 is pure imaginary.
=> put,
q z iz 0
( z0 : real)
At z = z0,
kr 2
( z 0) exp(
) exp{ip (0)}
2 z0
Beam radius at z=0,
2 z0 1/ 2
w0 (
)
: Beam Waist
k
Nonlinear Optics Lab.
Hanyang Univ.
2
w
0
q at arbitrary z, q z i
z0
1
1
z
1
: Complex beam radius
2
i
i
=>
2
2
2
2
q z iz 0 z z0
R w
z z0
dp
i
dz
q
2 1/ 2
1
=> ip ( z ) ln[ 1 ( z / z0 ) ] i tan ( z / z0 )
=> exp[ ip ( z )]
1
1
exp[
i
tan
( z / z0 )]
2 1/ 2
[1 ( z / z0 ) ]
Nonlinear Optics Lab.
Hanyang Univ.
Wave field
E0 ( x, y, z ) w0
r 2
kr 2
1
exp 2 exp i[kz tan ( z / z0 ) exp i
EA
w
(
z
)
w
(
z
)
2
R
(
z
)
2
z 2
z
2
2
2
w0 1 : Beam radius
where, w ( z ) w0 1
2
z
nw0
0
2
nw 2 2
z
0
0
z 1 : Radius of curvature of the wave front
R( z ) z 1
z
z
nw0 2
: Confocal parameter(2z0) or Rayleigh range
z0
Nonlinear Optics Lab.
Hanyang Univ.
Gaussian beam
spread angle :
/ 2 / nw0
I
2w0
w0
z
z0
Gaussian
profile
z 0
Near field
(~ plane wave)
Far field
(~ spherical wave)
Nonlinear Optics Lab.
Hanyang Univ.
2.6 Fundamental Gaussian beam in a Lenslike Medium - ABCD law
For lenslike medium,
2
'
1 1 k2
0
q q k
1 s'
q s
Introduce s as,
s ( z ) a sin
s' ( z ) a
P'
i
q
s" s
k2
0
k
k2
k
z b cos 2 z
k
k
Table 2-1 (6)
k2
k
k
cos 2 z b 2 sin
k
k
k
k2
z
k
k /k z q k /k sin k /k z
q ( z )
sin k /k z k /k q cos k /k z
cos
2
2
0
2
2
0
q2
Aq1 B
Cq1 D
2
2
Nonlinear Optics Lab.
Hanyang Univ.
Transformation of the Gaussian beam – the ABCD law
Matrix method (Ray optics)
yi i
o
yo
optical
elements
yo A B yi
C D
i
o
A B
C D : ray-transfer matrix
Nonlinear Optics Lab.
Hanyang Univ.
ABCD law for Gaussian beam
yo A B yi
C D
i
o
yo Ayi B i
o Cyi D i
Ayi B i
Ro
o Cyi D i
Ayi / i B
Cyi / i D
yo
Ro (ray optics) q (Gaussian optics)
optical system
ABCD law for Gaussian beam :
A B
C D
q1
q2
Aq1 B
q2
Cq1 D
Nonlinear Optics Lab.
q z iz 0
nw0 2
z0
Hanyang Univ.
example) Gaussian beam focusing
w01
w02 ?
1
z1
A
C
B 1
D 0
z2 ?
z 2 1
1 1 / f
1 z 2 / f
0
0 1
1 0
z1
1
z1 z 2 z1 z 2 /
1 z1 / f
f
q2
(1 z 2 / f )q1 ( z1 z 2 z1 z 2 / f )
q1 / f (1 z1 / f )
Nonlinear Optics Lab.
Hanyang Univ.
1
1
2
2
w02
w01
2
z1
1 w
1 2 01
f
f
2
f 2 ( z1 f )
z2 f
( f )
2
2
2
( z1 f ) (w01 / )
- If a strong positive lens is used ; w01 w02
=> w02
=> w02
f
f 1
w01
2 f N
2 f
, f N f / d : f-number
(2w01 )
; The smaller the f# of the lens, the smaller the beam waist at the focused spot.
2
- If w01 / ( z1 f )
2
=> z2 f
Note) To satisfy this condition, the beam is expanded before being focused.
Nonlinear Optics Lab.
Hanyang Univ.
2.7 A Gaussian Beam in Lens Waveguide
Matrix for sequence of thin lenses relating a ray in plane s+1 to the plane s=1 :
At
BT
CT
DT
A
B
C
D
s
A sin( s ) sin ( s 1)
AT
sin
B sin( s )
BT
sin
C sin( s )
CT
sin
D sin( s ) sin ( s 1)
DT
sin
Asin( s )sin ( s1) q1 Bsin( s )
qs1
Csin( s )q1 Dsin( s )sin ( s1)
Stability condition for the Gaussian beam :
d
d
1
1
0 1
2 f1 2 f 2
d d
1
d2
where, cos A D 1
2
f 2 f1 2 f1 f 2
: Same as condition for
stable-ray propagation
Nonlinear Optics Lab.
Hanyang Univ.