Download ppt 14.7MB

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Dynamical Localization and Delocalization in a
Quasiperiodic Driven System
Hans Lignier, Jean Claude Garreau, Pascal Szriftgiser
Laboratoire de Physique des Lasers, Atomes et Molécules, PHLAM, Lille, France
Dominique Delande
Laboratoire Kastler-Brossel, Paris, France
FRISNO-8, EIN BOKEK 2005
This work has been
supported by :
The Quantum Chaos Project:
- An experimental realization of an atomic kicked rotor
-The observation of the « Dynamical Localization »
Phenomenon, and its destruction induced by time
periodicity breaking
- Observation of sub-Fourier resonances
- Is DL’s destruction reversible?
The atomic kicked rotor
Free evolving atoms…
0<t <T
… periodically kicked by a far detuned laser standing wave:
V
0
t=T
V  standing wave intensity
0
T < t < 2T
T: kick’s period
Graham, Schlautman, Zoller (1992)
Standing wave intensity v.s. time
Moore, Robinson, Bharucha, Sundaram, Raizen, PRL 75, 4598 (1995)
The kicked rotor classical dynamic
H t ' ,   P 2 / 2  K cos   t 'n 
Pt 1  Pt  K sin  t 1

 t 1   t  Pt
n
t '  t / T ,   2 k L x, P 
K=0
2k LT
p
M
The standard map: B. V. Chirikov, Phys. Rep. 52, 263 (1979)
K = 0.01
p2
p 2  2 Dt
K>>1
Gaussian distribution
time
K~1
K=5
The whole classical dynamic is given by only one parameter: K  8V0 rT / 
: pulse duration ( << T )
Quantized standard map
2
Same Hamiltonian: H t ,   P / 2  K cos   t  n 
Schrödinger equation:
ik

 H
t
n
k  8rT scaled Planck constant
Two parameters: k and K
 i P2 
 i

 n 
Quantization of the map:  n  1  exp   K cos  exp  
 k

 k 2 



 
Kicked Rotor Quantum Dynamics
P(p)
p2
Classical
evolution
p 2  2 Dt
P(p)
2
ploc
Quantum
evolution
P(p)
0
TH: localisation time
* Periodic system: Floquet theorem
* Suppression of classical diffusion
* Exponential localization in the p-space
time
Casati, Chirikov, Ford, Izrailev (1979)
Dynamical Localization
Localisation time:
TH
1K 
 

2 k 
2
Typical experimental
values:
1
0 kicks
10 kicks
10-1
20 kicks
10-2
50 kicks
10  K  20
10-3
1 k  3
10-4
100 kicks
200 kicks
10-5
5  TH  25 Kicks
-600
p / 2k 0
Experiment => atomic velocity measurement
600
A Raman experiment on caesium atoms
200 GHz
Optical
transition
F=
9.2 4GHz
F=
3
Ground state
, detuning ~ kHz
Resonant transition (with a null magnetic field) for:
  2kVatome  Cte
M. Kasevich and S. Chu, Phys. Rev. Lett., 69, 1741 (1992)
Beat power (dBm)
Raman beam generation
-40
-60
-80
-100
-120
-140
-400
FWHM ~ 1 Hz
DC Bias
-200
0
200
Beat frequency: 9 200 996 863 Hz
4.6 GHz
400 Hz
0
-1
FP
S+1
Master
S-1
+1
Experimental Sequence
4
Trap loading
Deeper Sisyphus cooling
Pulse sequence
3
Velocity selection
Cell
Pushing beam
Raman 2
11°
4
Raman 1
3
Repumping
Final probing
Stationary wave beam
Probe beam
Raman 2bis
Trap beams are not shown
Pushing beam
Experimental observation of (one color)
dynamical localization
Initial gaussian distribution
1
0.1
Distribution after 50 kicks
0.01
Gaussian fit
Exponential fit
0.001
f (kHz) -300 -200 -100
p/hk -40
-20
0
0
100 200 300
20
40
Kick’s period: T = 27 µs (36 kHz), 50 pulses of  = 0.5 µs duration.
K~10, k~1.4
B. G. Klappauf, W. H. Oskay, D. A. Steck and M. G. Raizen, Phys. Rev. Lett., 81, 1203 (1998)
Two colours modulation
One colour modulation :
H t ,   P 2 / 2  K cos   t  n 
n
Two colours modulation :


H t ,   P 2 / 2  K cos    t  n     t  n / r   
n
n

r = f1/f2, frequency ratio of two pulse series:
f1
f2
time
-Periodicity breaking and Floquet’s states.
-Relationship between frequency modulation and
effective dimensionality.
-Dynamical localisation and Anderson localisation.
G. Casati, I. Guarneri and D. L. Shepelyansky, Phys. Rev. Lett., 62, 345 (1989)
Two-colours dynamical localization breaking
The population P(0) of the 0 velocity class is a measurement
of the degree of localization
 = 180°
Initial distribution
Localized
1
Delocalized
Standing wave intensity v.s. time
Freq. ratio =
1.083
0.1
Freq. ratio =
1.000
0.01
-60
-40
-20
0
20
40
60
Momentum (recoil units)
For an « irrational » value of the frequency ratio, the classical diffusive behavior is preserved
J. Ringot, P. Szriftgiser, J.C. Garreau and D. Delande, Phys. Rev. Lett., 85, 2741 (2000).
Localization P(0)
« Localization spectrum »
F = 52°
1
1/2
1/4 1/3
2
2/3
3/4
4/3
5/3
3/2
5/4
0
0.5
1
Frequency ratio
1.5
2
Sub-Fourier lines
DExp)
4.8
Experimental
DFT
FT
4.4
FT
Atomic signal
4.6
~ 1
37
4.2
r = 0.87
4.0
f2
f1
3.8
3.6
0.85
0.90
0.95
1.00
1.05
1.10
1.15
FT
Frequency ratio r
Pascal Szriftgiser, Jean Ringot, Dominique Delande, Jean Claude Garreau, PRL, 89, 224101 (2002)
f
First Interpretation
The higher harmonics in the excitation spectrum are responsible of the higher resolution:
 (1) The resonance’s width is independent of the kick’s strength K
 (2) If the pulse width is increased => the resonance’s width should increase as well
 (3) The resonance’s width decay as 1/Texcitation sequence
Experimental points at
N1=10, for  = 1,2,3 µs
Assuming: K  
Resonance width ×N1
1
Fourier limit
8
6
4
2
0.1
1 µs
2 µs
3 µs
4
2
0.01
K = 14
8
6
K = 28
8
6
K = 42
4
5
6
7
8 9
2
10
3
4
5
6
7
8 9
100
Pulse number N1
Numerical evaluation of the resonance’s width as a function of time.
The resonance width shrinks faster than the reciprocal length of the excitation time
Let’s come back to the periodic case: the Floquet’s States
 i P2 
 i


For a mono-color experiment: n  1  Fn, F  exp   K cos  exp  
 k

 k 2 
An infinity of eigenstates k: F|k> = eie(k) |k>
F: Floquet operator
In the Floquet’s states basis:
0
10
K = 10, k = 2
-1
10
n   F n 0   ck exp  ine k  k
k
-2
|< k |k>|2
10
-3
Only the significant states
are taken into account: |ck|2 > 0.0001
10
-4
10
-5
10
-6
10
-250
ck  k 0
-200
-150
-100
-50
0
50
Momentum
100
150
200
250
The non periodic case: Dynamic of the Floquet’s States
K
k
Only the significant states are plotted (|ck|2 > 0.0001):
K+K
kk
time
0
10
K = 10, k = 2
-1
10
-2
10
-3
10
-4
10
Avoided
crossings
-5
10
-6
10
-250
-200
-150
-100
-50
0
50
Momentum
100
150
200
250
C
H. Lignier, J. C. Garreau, P. Szriftgiser, D. Delande,
Europhys. Lett., 69, 327 (2005)
Partial Reversibility in DL Destruction
1
0
1.5
1.5
1
1
1.5
0.5
0.5
1.4
0
0
1.7
1.6
-40
1.3
-20
0
20
40 -40
-20
40
50
0
20
40
1.2
1.1
1
P = 0 W
0.9
0.8
P = 50 W
0
10
20
30
60
Kicks number (first series)
70
Conclusion

Dynamical localization destruction

Complex dynamics – unexpected results

Observation of a partial reconstruction of DL
n   F n 0   ck exp  ine k  k
k
ck  k 0
p 2 nT    ck ck ' exp  ine k  e k '  k ' p 2 k
*
k ,k '
At long time (i.e. after localization time), the interference terms
will on the average cancel out:
2
2
2
p
  ck
k p k
k
Adiabatic case:
Different state + random phase
Intermediate case:
Diabatic case:
Same state + random phase
Related documents