Download Energy resolution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Brief Overview of China’s Future
Space X-ray Astronomy Program
Shuang-Nan Zhang
Center for Particle Astrophysics
Institute of High Energy Physics
Chinese Academy of Sciences
Outline
• Approved missions: launch within the next 5 years
– Hard X-ray Modulation Telescope (HXMT)
– Space Variable Object Monitor (SVOM): China-France
collaboration (Barret’s Talk)
– Gamma-ray burst polarimeter (POLAR): China-Europe
collaboration on China’s Spacelab
• In mission definition and technology development phase:
launch within next ~10 years
– X-ray Timing and Polarization mission (XTP)
• Proposed onboard China’s Space Station: launch around
2021-2022
– Optical/UV/X-ray All-Sky Monitor
2/37
Payload Cabin
Platform Cabin
HXMT is a collaboration between:
Chinese Academy of Sciences, Tsinghua University
Chinese Academy of Space Technology
HE: NaI/CsI 5000 cm2
LE:SCD,384 cm2
ME:Si-PIN,952 cm2
Payloads onboard HXMT
Size:1900×1600×1000 mm3
LE
The Sun
A sunshading board will be set so that the LE and ME
instruments can work at low temperatures
5/37
High Energy X-ray Instrument
HXMT/HE Components assembly
• The 18 main collimated phoswich detectors
• Charged-particle anticoincidence plates (6 pieces up side +12
lateral side)
• Particle Monitor detectors
• Calibration detectors (automatic gain control)
6/37
The Field of View configuration of HE
2 Modules of
5.7 °× 5.7 °
1 Blind Module
15 Modules of
1.1 ° × 5.7 °
7/37
Detector:
Si-PIN
Energy coverage: 5-30 keV
Detecting area:
~950 cm2 (1728 pixels)
Sensitivity:
0.5 mCrab
Field of view:
1°×4°,4 °×4°, blind field
Energy resolution: < 1.5 [email protected]
Work temperature: -20~-40℃ for Si-PIN
Time resolution:
40 μs
Mass:
105kg
Power dissipation: 130 W
16 Si-PIN (0.56 cm2 each) pixels will be in one package and 2
packages read by a RENA-3 asic.
9/37
The low energy instrument (LE)
2×2
CCD236
16 cm2
FOVs of an LE module
The Hard X-ray Modulation Telescope @ EAMA-7
11/37
Detector:
SCD
Energy coverage: 1-15 keV
Charge flow
Detecting area:
~384 cm2 (96 chips)
Sensitivity:
0.5 mCrab
Field of view:
1.5°×6°,4 °×6°, blind field
60 °×3°(48cm2),
Energy resolution: <150 [email protected]
Work temperature: -40~-80℃ for SCD
Real & dummy
outputs in gap
Time resolution:
1 ms
Mass:
105 kg
Power dissipation: 130 W
Schematic map of a CCD236 (e2v)
Characteristics of the HXMT Mission
Detectors
LE: SCD, 384 cm2;ME : Si-PIN, 952 cm2
HE : NaI/CsI, 5000 cm2
Energy Range
LE: 1-15 keV;ME: 5-30 keV;HE: 20-250 keV
Time Resolution
HE: 25μs; ME: 20μs;LE: 1ms
Energy Resolution
LE: 2.5% @ 6 keV
ME: 8% @ 17.8 keV
HE: 19% @ 60 keV
Field of View of one LE: 6°×1.5°; 6°×4°; 60°×3°; blind;
module
ME: 4°×1°; 4°×4°; blind;
HE: 5.7°×1.1°; 5.7°×5.7°;blind
Source Location
<1' (20σ source)
13/37
Sensitivity (3σ, in
105s)
LE: 4.4×10-5 cts cm-2s-1 keV–1 (@6keV)
ME: 2.6×10-5 cts cm-2s-1 keV–1 (@20keV)
HE: 3×10-7 cts cm-2s-1 keV–1 (@100keV)
Orbit
Altitude: ~550 km ; Inclination: ~43°
Attitude
Three-axis stabilized
Control precision: ±0.1°
Measurement accuracy: ±0.01°
Data Rate
LE: 3 Mbps; ME: 3 Mbps; HE: 300 kbps
Payload Mass
~1000 kg
Nominal Lifetime
4 years
Working Mode
Scan survey, pointed observation
14/37
Scientific objectives of pointed observations
• X-ray Binaries
– Broadband X-ray variability, especially the QPO properties of BH
binaries at energy higher than 20 keV;
– Broadband spectral characteristics and state transitions
• Cyclotron Resonance Features (CRF) close to the neutron star
surface;
• Broadband spectrum of bright AGN: reflecting components and
high energy cut off;
Observation modes
• Scanning Sky Survey mode
• Deep scanning observations of selected sky
regions (such as the Galactic center region)
• Pointed observations
Status of HXMT
Full-funding decision: March 2011
• Phase-B (pre-flight module): 2011.6-2012.12
• Phase-C (flight module):
2013.1-2014.6
• Launch:
~2015
Outline
• Approved missions: launch within the next 5 years
– Hard X-ray Modulation Telescope (HXMT)
– Space Variable Object Monitor (SVOM): China-France
collaboration (Barret’s Talk)
– Gamma-ray burst polarimeter (POLAR): China-Europe
collaboration on China’s Spacelab
• In mission definition and technology development phase:
launch within next ~10 years
– X-ray Timing and Polarization mission (XTP)
• Proposed onboard China’s Space Station: launch around
2021-2022
– Optical/UV/X-ray All-Sky Monitor
18/37
Gamma-ray burst polarization experiment
onboard China’s Spacelab: POLAR
GRB prompt emission polarization:
a last observables of GRBs
•Different GRB models
– E-M Model: well defined, moderate Plin
~ 50%
– Fireball Model: high values excluded
Plin ~ 10-20 %
– Cannon ball Model: full range possible
Plin = 0 - 100%
•Probe quantum gravity (???):
– Amelino-Camelia G., 2000, Nature, 408,
661
– Piran T, 2005, Lect. Notes Phys, 669,
351
From M. Lyutikov, 2003
– Fan, Y-Z; Wei, D-M; Xu, D. 2007,
See papers discussing various GRB models:
MNRAS, 376, 1857
T. Piran, A. Dar, M. Lyutikov, D. Eichler, G.
Ghisellini, D. Lazzatti, M. Medvedev, E.
Rossi etc.
19/37
Gamma-ray burst polarization experiment
onboard China’s Spacelab: POLAR
• Onboard China’s spacelab
TG-2: launch time 2012-13
• A China-led international
collaboration (Switzerland,
France, Poland)
• FOV of POLAR: ~½ sky
Tian-Gong 天宫
Palace in Heaven
Plastic scintillator
stacks
Instrument concept proposed by N.
Produit, et al., NIM (2005) 20/37
POLAR capability summary
One year observation of POLAR
180
TS2/DM2 FOV = 2π
160
Number of GRBs (N < MDP)
140
•10 GRBs per year down to 8%, or
•60 GRBs per year down to 30%, or 100
GRBs per year down to 50% polarization,
120
100
80
60
40
20
0
0
10
20
30
40
50
60
70
80
Minimum Detectable Polarization with 3σ (%)
90
100
21/37
Outline
• Approved missions: launch within the next 5 years
– Hard X-ray Modulation Telescope (HXMT)
– Space Variable Object Monitor (SVOM): China-France
collaboration (Barret’s Talk)
– Gamma-ray burst polarimeter (POLAR): China-Europe
collaboration on China’s Spacelab
• In mission definition and technology development phase:
launch within next ~10 years
– X-ray Timing and Polarization mission (XTP)
• Proposed onboard China’s Space Station: launch around
2021-2022
– Optical/UV/X-ray All-Sky Monitor
22/37
X-ray Timing and Polarization (XTP) mission
• Key Science: Matter under extreme conditions
• Precise Light curve: Neutron Star equation of state, BH
basic parameters, formation and growth …
• Polarization of X-ray: Radiation mechanism…
• Diffuse X-ray emission, hot gas distribution in Galaxy
• …
• Main Requirement: large effective area & high counting rate
• The most accurate light curve and polarization
observation at 1-30 keV
23/37
HERO concept: High Energy Replicated Optics – Small
Aperture, Short Focal Length and Shallow Grazing Incidence
Using small mirror array to
achieve large collection area
at hard X-ray (>10 keV):
technically more feasible
than single large mirror.
Ramsey et al, SPIE 2000
24/37
Bepicolombo soft X-ray (<10 keV)
MPO telescope: short focal length & lightweight
2009-11-19
25
25/37
XTP Mission Concept
26/37
XTP (Possible) Instruments
SDD/CZT
High-energy Collimated
Array (1-100 keV)
High-energy Focused
Array (1-100 keV)
All Sky Monitor
(5-300 keV)
SDD/CZT
CZT
GEM
CCD
SCD
4m
focal
length
Polarization Observation
Telescope (2-10 keV)
Low-energy Focused
(0.5-10 keV)
Low-energy Collimated
Array (0.5-15 keV)
27/37
LFA: Low energy有效载荷初步方案
X-ray Focusing telescope Array 0.5-10 keV
Micro-pore Optics (MPO) mirrors, mDEPFET detectors
MPO光学原理
矩形微通道排列
环形微通道排列
28/37
High energy X-ray Focusing telescope Array (HFA): 1-100 keV
Double conical nested mirrors
SDD+CZT composite detector
29/37
Low energy x-ray Collimated detector Array (LCA): 0.5-15 keV
SCD: e2V
一个LCA模块示意图
LIGA made collimator: 30μm
thickness each layer
30/37
HCA: High energy X-ray Collimated detector Array 1-100 keV
HCA composite detector
31/37
POT: Polarization Observation Telescopes 2-10 keV
掠射望远镜可通过国际合
作由意大利INAF研制,图示
为意大利原为HXMT设计的多
层掠射镜的装配图。
GEM-TPC: 0.25-30 keV
32/37
ASM: All-Sky Monitor
FOV~2Sr, 4-300 keV, 1000cm2, 6400 × 4mm×4mm CdZnTe
33/37
XTP Basic Parameters
HFA:1-100 keV, 480 kg, 1°×1°, 1’
LFA:0.5-10 keV, 170 kg, 1°×1°, 1’
Energy
Range, HCA:1-100 keV, 500 kg, 2°×2°
Weight, FOV & LCA:0.5-15 keV, 400 kg, 2°×2°
Angular Resolution ASM:4-300 keV, 100 kg, 2 Sr
POT:2-10 keV, 110 kg, 22’ ×22’
Total satellite mass: 3210 kg
Geometrical Area
Energy Resolution
Timing Resolution
HFA: 5000 cm2 (1-6 keV), 2800 [email protected] keV
LFA:7400 [email protected] keV
HCA: 15000 cm2 (6-30 keV)
LCA: 15000 cm2 (1-6 keV)
150 [email protected] keV
4 [email protected] keV
10 μs
May choose near-earth orbit or L2 orbit, depending on available launcher (money)
34/37
Outline
• Approved missions: launch within the next 5 years
– Hard X-ray Modulation Telescope (HXMT)
– Space Variable Object Monitor (SVOM): China-France
collaboration (Barret’s Talk)
– Gamma-ray burst polarimeter (POLAR): China-Europe
collaboration on China’s Spacelab
• In mission definition and technology development phase:
launch within next ~10 years
– X-ray Timing and Polarization mission (XTP)
• Proposed onboard China’s Space Station: launch around
2021-2022
– Optical/UV/X-ray All-Sky Monitor
35/37
OUVX-ASM Mission Concept
One X-ray ASM Module
zenith
FOV of
OUV-ASM
Motion of
spacecraft
FOV of X-ASM
36/37
Summary on China’s Future Space
X-ray Astronomy Program
• Approved missions
– Hard X-ray Modulation Telescope (HXMT): 2014-2015
– Space Variable Object Monitor (SVOM): China-France
collaboration (Barret’s Talk) ~2015
– Gamma-ray burst polarimeter (POLAR): China-Europe
collaboration on China’s Spacelab 2012-2013
• In mission definition and technology development phase
– X-ray Timing and Polarization mission (XTP) ~2020
• Proposed onboard China’s Space Station
– Optical/UV/X-ray All-Sky Monitor ~2021-2022
37/37
Related documents