Download Numerical simulation tools for optics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Numerical propagation
of light beams in
refracting/diffracting devices
Jean-Yves VINET
Observatoire de la Côte d’Azur
(Nice, France)
KASHIWA-October-2011
J.-Y. Vinet
1
Summary
•Needs for optical simulations
•General principles of numerical propagation :
several methods
•Some examples :
•Fourier Transform
•Hankel Transform
•Modal
•Monte-Carlo
•Advantages/drawbacks
KASHIWA-October-2011
2
J.-Y. Vinet
Needs for Optical simulations
in GW interferometer design
1) Sensitivity of a GW interferometer is strongly
dependent on the quality of the Fabry-Perot cavities
-Efficiency of power recycling
-Power in sidebands
2) Quality of Fabry-Perot’s depends on the quality of the
mirrors
3) Mirrors are not perfect ! Requirements are needed for
manufacturers
4) Heated mirrors change of internal/external properties
KASHIWA-October-2011
J.-Y. Vinet
General principles of
Propagation Methods
Expand optical field on a family of functions of which
propagation is well known
•Plane waves
•Bessel waves
•Gaussian modes (eg. HG or LG)
•Photons
KASHIWA-October2011
J.-Y. Vinet
4
Propagation by Fourier Transform :
General principles
KASHIWA-October-2011
J.-Y. Vinet
5
Paraxial diffraction theory
Maxwell+single frequency  Helmholtz :
Slowly varying envelope :
 2x   2y   2z   2 / c 2  E ( , x, y, z )  0
E(, x, y, z)  exp ikz  F (, x, y, z) and  z F  kF
 2
k 
c

Paraxial diffraction equation ( math. analogous to Heat-Fourier and to Schrödinger eq. ) :
 2x   2y  2ik  z  F ( , x, y, z )  0
2D Fourier Tr. : f ( p, q) 

f ( x, y )eipx eiqy dxdy
R2
 2ik  z  p 2  q 2  F ( , p, q, z )  0


p2  q2
F (, p, q, z1 )  exp  i
( z1  z0 )  F (, p, q, z0 )
4


propagator
KASHIWA-October-2011
J.-Y. Vinet
6
6
Propagation by Fourier Transform
Diffraction over z
A( x, y, z0 )
A( x, y, z0  z )
FT-1
FT
 p2  q2 
exp  i
z 
2
k


A( p, q, z0 )
A( p, q, z0  z)
Use of Discrete Fourier Transform (in practice : FFT)
x=0
x=W
x-window
1
p=0
2
3
 x W / N
N
p  pmax  N / W
p-window
Positive frequencies
KASHIWA-October-2011
N/2
J.-Y. Vinet
 p  2 / W Negative frequencies
7
Mode of a Fabry-Perot cavity
E
A
L
B
E’
M1
Implicit equation :
M2
E  T1  A  ( R1  PL  R2  PL )  E
   xx 2 y y 2


Ra  ra exp
2ik2ik 
) 2) 
R 
r
exp
 f (
x, yf) a ( x(,a y
 1,
2





   2 a
2
Mirror
operators
in
xy plane
a
2
a
a
Curvature radius
Ta  ta exp ikha ( x, y)
Optical thickness
Propagation
KASHIWA-October-2011
(a  1, 2)
a
Measured roughness
(Lyon’s surface charts)
propagator
PL  X  F -1 P.F  X  
J.-Y. Vinet
8
Solution by simple relaxation scheme :
En  T1 A  C  En1
With initial guess :
E0 
C  M1  P  M 2  P
t1
TEM 00
1  r1r2
Large number of iterations if large finesse and/or large defects
Accelerated convergence (a la Aitken):
En   n1En1  n1 (T1 A  C  En1 )
En' of simple relaxation
With optimal choice of
 n , n
at each iteration
See e.g. : Saha, JOSA A, Vol 14, No 9, 1997
KASHIWA-October-2011
J.-Y. Vinet
9
Black fringe :( ideal TEM00) – (TEM00 reflected by a Virgo cavity) 10-8 W/W
2 x perfect 35cm mirors
30 cm
KASHIWA-October-2011
J.-Y. Vinet
10
Propagation by Bessel Transform :
General principles
Suitable for axisymmetrical problems
Fourier Transform :
1
f ( p, q ) 
dxdy exp i ( px  qy )  f ( x, y )

2
Assume (axial symmetry) :

f ( x, y )  f r  x 2  y 2

then
x  r cos  , y  r sin  ,
f ( ) 
p   cos  , q   sin 
1
rdrd exp i  r cos(   ) f (r )   J 0 ( r ) f (r )rdr

2
Bessel Transform
KASHIWA-October-2011
J.-Y. Vinet
11
Inverse B transform :
f (r )   J 0 ( r ) f (  )  d 
Assume
Let
f (r )
r a
negligible for
 ,   1,..., 
be the zeros of
J1 (r )
 (r )  J 0 (  r / a)
are a complete, orthogonal family on 0, a 
Sturm-Liouville theorem : the
a
  (r ) (r )rdr  p  ,
0
So that

f (r )  
 1
KASHIWA-October-2011
f
 (r )
p
a2 2
p 
J 0 (  )
2
a
with
f   f (r ) (r )rdr
0
J.-Y. Vinet
12
J1 ( x )
The first 20 zeros of J1 ( x)
x
Example of a sampling grid with 20 nodes
0.
1
xi   i a /  N
KASHIWA-October-2011
J.-Y. Vinet
a
N
13

f (r )  
 1
r    a /  N
f
 (r )
p

f   f (r )  
 1

  
f
2
 (r )   2 2
J0 
p
 1 a J 0 (  )
 N
Reciprocal F transform :

f   H( ) f 
 1
with H( )
Direct F transform :

   
2J0 


 2 2 N 
a J 0 (  )
   
2a J 0 


 N 

 N2 J 02 (  )
2
()
f   H
f
 1

 f

()
with H
f  f (  ) with  

a
Direct and inverse Bessel transforms are done with explicit matrices
KASHIWA-October-2011
J.-Y. Vinet
14
Propagator in the Fourier space over distance z :
 z 2
2 
P( p, q, z )  exp  i
p  q 

 4

p2  q2   2
In the Fourier-Bessel space :
 
After sampling :

a
 z 2 
P (z )  exp  i

2 
 4 a

Diffraction step by a simple matrix product :


 1
 1
()
 ( z  z )   P   (z) with P (z)   H( ) P (z) H
To be computed once
KASHIWA-October-2011
J.-Y. Vinet
15
Example : propagation of a TEM00 over 3000 m
Initial wave
Diffraction theory
Bessel propagated
KASHIWA-October-2011
J.-Y. Vinet
16
Representation of mirrors
Axially symmetrical defects : diagonal operator
 4i
M   r exp 
 
 r2

 f (r )  

 2 Rc

Pure parabolic
contribution
 a
with r 
N
defects
Reflected field :
 '  M 
KASHIWA-October-2011
J.-Y. Vinet
17
Example : reflectance of a Fabry-Perot cavity
A
E
L
B
Intracavity field :
M1
M2
E  t1 A  e2ikL M 1P( L) M 2 P( L) E
C Matrix operator
1
Intracavity field by matrix inversion :
E   Id  e
Reflected field by matrix product :
B  R A
With the reflectance operator
R  M  t1 PM 2 P  Id  e
KASHIWA-October-2011

J.-Y. Vinet
†
1
C  t1 A
2ikL
1
C  t1
2 ikL

18
Modal propagation : general principles
The set of all complex functions  ( x, y ) of integrable square modulus
has the structure of a Hilbert space, with a scalar product
,  
*
dxdy

( x, y)( x, y)

2
An example of a basis of such a HS is the Hermite-Gauss family of optical modes
 x2  y 2 
 2 x 2  y 2 
x
y


 nm ( x, y)   nm H n  2  H m  2  exp 
exp i

2
w
w
w 
R 



 
So that any optical amplitude can be expanded in a series of HG modes
A( x, y )   Anm  nm ( x, y )
m,n
KASHIWA-October-2011
J.-Y. Vinet
19
Propagation of a HG mode of parameter (waist) w0 :
2P
 lm ( x, y, z ) 
 w( z )2


1
r2
r2
exp  
 ik
 iGlm ( z )  
mn
2
2 m !n !
2 R( z )
 w( z )

x
y


H l  2  H m  2 
w
w


Rayleigh parameter :
Beam width :
b   w02 / 
w( z )  w0 1  ( z / b) 2
Curvature radius of the wavefront :
Gouy phase
KASHIWA-October-2011
b2
R( z )  z 
z
Glm ( z )  (l  m  1) arctan( z / b)
J.-Y. Vinet
20
Diffraction of a Gaussian beam
w( z )  w0 1  ( z / b)
2
w0
z 0
KASHIWA-October-2011
J.-Y. Vinet
z
b2
R( z )  z 
z
21
HG01
HG22
HG55
HG05
KASHIWA-October-2011
J.-Y. Vinet
22
Representation of mirrors by their matrix elements
M abcd  ab , M cd
M abcd  ab , M cd
Modal expansion widely used by
Andreas Freise’s « Finesse » package
Propagation of light in complex structures
by Monte-Carlo photons
Principle : send random pointlike particles
from identified sources
Scattered light
« Main beam »
Rough mirror
surface
Reflection of a photon
k
n
k'
k '  k  2(k .n ) n
Refraction of a photon
k
n
1
k'
N
k'


 k  k .n  N 2  1  (k .n ) 2 n 


Diffusion of a photon

'
Rough surface
Random variable
with a PD that mimics
the BRDF of the material
Diffraction of photons ?
Example 1 : Propagation of a beam
target
source
Probability Density
of direction
2
dP
1
 2 lm ( ,  )
d 
Probability Density
of emission point
dP
2
 lm ( x, y )
dS
KASHIWA-October-2011
lm ( p, q) p 
2

sin  cos  , q 
2

sin  sin 
 lm ( ,  )
J.-Y. Vinet
29
Monte-Carlo methods
Example 1 : propagation of a TEM00 over 3000 m
w0=2cm
Initial wave : MC
Analytical initial TEM
MC propagated
Diffraction theory
Radial coord. [m]
KASHIWA-October-2011
J.-Y. Vinet
30
Example 2 : Management of diffraction
by obstacles
Emission
of photons

x
target
screen
p.x  , p  k

: Centered random deviate of standard deviation
KASHIWA-October-2011
J.-Y. Vinet
  
 4x 
 *  arctan 
31
Example 2 : diffraction by an edge
Screen at 5m
Histogram : Monte-Carlo
Diffraction theory
(Fresnel Integral)
transverse distances [m]
KASHIWA-October-2011
J.-Y. Vinet
32
Conclusion
*FFT propagation : general purpose codes (DarkF),
suitable even for short spatial wavelength defects
of mirrors
•Propagation by Bessel transform : suitable for axisymmetrical
problems (eg. heating by axisymmetrical beams)
•Propagation by modal expansion : ideal for nearly
perfect instruments,
small misalignments, small ROC errors, etc….
•Photons : mandatory for propagation of scattered light
in complex structures (vacuum tanks, etc…)
Related documents