Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Probability Refresher COMP5416 Advanced Network Technologies Discrete random variables Probability • Events can take only discrete values, e.g. integer values • Probabilities sum to 1.0 1.0 pk Mean kpk Variance k mean 2 pk 1 2 3 4 5 6 value School of Information Technologies COMP5416 Simulation - 2 Example – Roll a die • Discrete values 1,2,3,4,5,6 • Each with probability 1/6 Mean 6 1 1 2 3 4 5 6 21 k 3.5 6 6 6 k 1 Variance 6 2 1 k 3.5 k 1 10.20833 6 Standard Deviation variance 3.195048 School of Information Technologies COMP5416 Simulation - 3 • Discrete values • 1 with probability p, • 0 with probability 1-p Probability Example – Bernoulli random variable p 1-p Mean p Variance (1 p) p 0 1 School of Information Technologies value COMP5416 Simulation - 4 Example – Poisson random variable k pk e Mean k! Variance Probability • Discrete values 0,1,2,...,infinity • Value k has probability pk, with 0 1 2 3 4 5 6 School of Information Technologies 7 value COMP5416 Simulation - 5 Continuous random variables • Events can take real values on arbitrary range • Probabilities integrate to 1.0 2 1.0 p( x)dx 1.8 1.6 Mean xp( x)dx 1.4 1.2 Variance x mean p( x)dx 1 0.8 0.6 2 0.4 0.2 3. 8 3. 6 3. 4 3 3. 2 2. 8 2. 6 2. 4 2 2. 2 1. 8 1. 6 1. 4 1 1. 2 0. 8 0. 6 0. 4 0 0. 2 0 School of Information Technologies COMP5416 Simulation - 6 Continuous random variables PrX x • Distribution Function 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 3. 8 3. 6 3. 4 3. 2 3 2. 8 2. 6 2. 4 2. 2 2 1. 8 1. 6 1. 4 1. 2 1 0. 8 0. 6 0. 4 0. 2 0 0 School of Information Technologies COMP5416 Simulation - 7 Example – negative exponential random variable Probability density function, negative exponential, m=2 2 1.8 • Parameter m 1.4 1.2 mx 1 0.8 0.6 mx 0.2 m 3. 8 3. 6 3. 4 3 3. 2 2. 8 2. 6 2. 4 2 2. 2 1. 8 1. 6 1. 4 1 1. 2 0. 8 0. 6 Probability distribution function, negative exponential, m=2 0.9 0.8 2 0.6 0.5 0.4 0.3 0.2 0.1 3. 8 3. 6 3. 4 3. 2 3 2. 8 2. 6 2. 4 2. 2 2 1. 8 1. 6 1. 4 1 1. 2 m 0. 8 0 0. 6 1 0. 4 Standard Deviation 0.7 0 1 Variance m 1 0. 4 0 0 0. 2 PrX x 1 e 1 Mean 0.4 0. 2 p ( x) me 1.6 School of Information Technologies COMP5416 Simulation - 8 Example – Gaussian random variable Gaussian density function, m=0, s=1 0.45 0.4 • Parameters m, s 0.35 0.3 0.25 0.2 2 5 8 1 4 7 1. 1. 2. 2. 2. 3 1. 8 2. 1 2. 4 2. 7 3 9 1. 5 6 0. 1. 3 0. 0 0. .6 .9 .2 .5 .8 .1 .4 .7 .3 -0 -0 -0 -1 -1 -1 -2 -2 Gaussian distribution function, m=0, s=1 1 0.9 Variance s Standard Deviation s 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1. 2 0. 9 0. 6 0. 3 0 0 -3 -2 .7 -2 .4 -2 .1 -1 .8 -1 .5 -1 .2 -0 .9 -0 .6 -0 .3 2 0 -3 2s 2 0.1 0.05 -2 1 p ( x) e s 2 Mean m x m 2 0.15 School of Information Technologies COMP5416 Simulation - 9