Download Discrete random variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Probability Refresher
COMP5416
Advanced Network Technologies
Discrete random variables
Probability
• Events can take only discrete values, e.g. integer
values
• Probabilities sum to 1.0
1.0   pk
Mean   kpk
Variance   k  mean 2 pk
1 2 3 4 5 6
value
School of Information Technologies
COMP5416
Simulation - 2
Example – Roll a die
• Discrete values 1,2,3,4,5,6
• Each with probability 1/6
Mean 
6
 1  1  2  3  4  5  6 21
k

 3.5
  6  
6
6
k 1
Variance 
6
2 1 
 k  3.5
k 1
   10.20833
6
Standard Deviation  variance  3.195048
School of Information Technologies
COMP5416
Simulation - 3
• Discrete values
• 1 with probability p,
• 0 with probability 1-p
Probability
Example – Bernoulli random variable
p
1-p
Mean  p
Variance  (1  p)  p
0
1
School of Information Technologies
value
COMP5416
Simulation - 4
Example – Poisson random variable
k

pk  e  
Mean  
k!
Variance  
Probability
• Discrete values 0,1,2,...,infinity
• Value k has probability pk, with
0 1 2 3 4 5 6
School of Information Technologies
7 value
COMP5416
Simulation - 5
Continuous random variables
• Events can take real values on arbitrary range
• Probabilities integrate to 1.0
2
1.0   p( x)dx
1.8
1.6
Mean   xp( x)dx
1.4
1.2
Variance   x  mean  p( x)dx
1
0.8
0.6
2
0.4
0.2
3.
8
3.
6
3.
4
3
3.
2
2.
8
2.
6
2.
4
2
2.
2
1.
8
1.
6
1.
4
1
1.
2
0.
8
0.
6
0.
4
0
0.
2
0
School of Information Technologies
COMP5416
Simulation - 6
Continuous random variables
PrX  x
• Distribution Function
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
3.
8
3.
6
3.
4
3.
2
3
2.
8
2.
6
2.
4
2.
2
2
1.
8
1.
6
1.
4
1.
2
1
0.
8
0.
6
0.
4
0.
2
0
0
School of Information Technologies
COMP5416
Simulation - 7
Example – negative exponential
random variable
Probability density function,
negative exponential, m=2
2
1.8
• Parameter m
1.4
1.2
 mx
1
0.8
0.6
 mx
0.2
m
3.
8
3.
6
3.
4
3
3.
2
2.
8
2.
6
2.
4
2
2.
2
1.
8
1.
6
1.
4
1
1.
2
0.
8
0.
6
Probability distribution function,
negative exponential, m=2
0.9
0.8
2
0.6
0.5
0.4
0.3
0.2
0.1
3.
8
3.
6
3.
4
3.
2
3
2.
8
2.
6
2.
4
2.
2
2
1.
8
1.
6
1.
4
1
1.
2
m
0.
8
0
0.
6
1
0.
4
Standard Deviation 
0.7
0
1
Variance   
m
1
0.
4
0
0
0.
2
PrX  x  1  e
1
Mean 
0.4
0.
2
p ( x)  me
1.6
School of Information Technologies
COMP5416
Simulation - 8
Example – Gaussian random variable
Gaussian density function,
m=0, s=1
0.45
0.4
• Parameters m, s
0.35
0.3
0.25
0.2
2
5
8
1
4
7
1.
1.
2.
2.
2.
3
1.
8
2.
1
2.
4
2.
7
3
9
1.
5
6
0.
1.
3
0.
0
0.
.6
.9
.2
.5
.8
.1
.4
.7
.3
-0
-0
-0
-1
-1
-1
-2
-2
Gaussian distribution function,
m=0, s=1
1
0.9
Variance  s
Standard Deviation  s
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
1.
2
0.
9
0.
6
0.
3
0
0
-3
-2
.7
-2
.4
-2
.1
-1
.8
-1
.5
-1
.2
-0
.9
-0
.6
-0
.3
2
0
-3
2s 2
0.1
0.05
-2
1
p ( x) 
e
s 2
Mean  m

x  m 2

0.15
School of Information Technologies
COMP5416
Simulation - 9
Related documents