Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
DISSERTATION PAPER Modeling and Forecasting the Volatility of the EUR/ROL Exchange Rate Using GARCH Models. Student :Becar Iuliana Supervisor: Professor Moisa Altar Table of Contents • The importance of forecasting exchange rate volatility. • Data description. • Model estimates and forecasting performances. • Concluding remarks. Why model and forecast volatility? Volatility is one of the most important concepts in the whole of finance. ARCH models offered new tools for measuring risk, and its impact on return. Volatility of exchange rates is of importance because of the uncertainty it creates for prices of exports and imports, for the value of international reserves and for open positions in foreign currency. Volatility Models. ARCH/GARCH models. Engle(1982) Bollerslev(1986) Baillie, Bollerslev and Mikkelsen (1996) ARFIMA models. Granger (1980) Data description Data series: nominal daily EUR/ROL exchange rates Time length: 04:01:1999-11:06:2004 1384 nominal percentage returns yt 100[ln( st ) ln( st 1 )] Exchange Rate 40000 Time Series of The Exchange Rate 35000 30000 25000 20000 15000 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 Descriptive Statistics for the return series. 0.8 Density Histogram of Returns together with the Normal and Return Density 0.7 Statistic t-Test P-Value 0.6 0.5 Skewness 1.0472 15.922 4.4605e-057 0.4 Excess Kurtosis 8.5138 64.769 0.00000 JarqueBera 4432.9 0.3 0.2 0.1 -2 -1 0 1 2 3 4 5 6 7 Heteroscedasticity 7 6 5 The Daily Return Series 4 3 2 1 0 -1 -2 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 The returns are not homoskedastic. Low serial dependence in returns. The Ljung-Box statistic for 20 lags equals 27.392 [0.125]. 37.6 2 20 1300 Autocorrelation and Partial autocorrelation of the Return Series 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 0 5 10 15 20 Autocorrelation and Partial Autocorrelation of Squared Returns 1.00 0.75 0.50 0.25 The Ljung-Box statistic for 20 lags equals 151.01[0.000] 0.00 ARCH 1 test: 17.955 [0.0000]** ARCH 2 test: 18.847 [0.0000]** -0.25 -0.50 -0.75 0 5 10 15 20 Stationarity Unit Root Tests for EUR/ROL return series. ADF Test Statistic -35.60834 1% Critical Value* -3.4380 5% Critical Value 10% Critical Value 1% Critical Value* -3.4380 -2.8641 5% Critical Value -2.8641 -2.5681 10% Critical Value -2.5681 *MacKinnon critical values for rejection of hypothesis of a unit root. PP Test Statistic -35.57805 *MacKinnon critical values for rejection of hypothesis of a unit root. Model estimates and forecasting performances. Methodology. Ox Professional 3.30 [email protected] 4.01.1999-30.12.2002 (1018 observations) for model estimation 06.01.2003-11.06.2004 (366 observations) for out of sample forecast evaluation. The Models. Two distributions: Student, Skewed Student, QMLE. The Mean Equations: 1. A constant mean 2. An ARFIMA(1,da,0) mean 3. An ARFIMA(0, da,1) mean The variance equations. GARCH(1,1) and FIGARCH(1,d,1) without the constant term and with a non-trading day dummy variable. The estimated twelve models. Examining the models page 30 to 34 the conclusions are: • The estimated coefficients are significantly different from zero at the 10% level. • the ARFIMA coefficient lies between 0.5;0.5 which implies stationarity. • all variance coefficients are positive and 1 In-sample model evaluation. Residual tests. GARCH models. Model SBC Skewness EK1 Q* Q2** ARCH*** Nyblom ARMA (0,0) GARCH(1,1) Skewed-Student 2.210463 0.75224 3.9543 37.5958 [0.9019571] 30.3204 [0.9783154] 1.1358 [0.3395] 1.96933 ARMA (0,0) GARCH(1,1) Student 2.212901 0.74033 3.8319 37.5877 [0.9021277] 30.3145 [0.9783579] 1.1238 [0.3458] 1.58334 ARFIMA (1,d,0) GARCH(1,1) Skewed-Student 2.214579 0.76024 4.1028 36.4188 [0.9083405] 31.7529 [0.9659063] 1.2484 [0.2843] 2.24209 ARFIMA (1,d,0) GARCH(1,1) Student 2.216388 0.73353 3.857 36.0009 [0.9165657] 31.8411 [0.9649974] 1.1801 [0.3169] 1.89543 ARFIMA (0,d,1) GARCH(1,1) Skewed-Student 2.215735 0.75909 4.1153 36.1425 [0.9138359] 31.3112 [0.9701942] 1.2084 [0.3030] 2.2612 ARFIMA (0,d,1) GARCH(1,1) Student 2.217401 0.73390 3.8852 35.8043 [0.9202571] 31.3087 [0.9702172] 1.1360 [0.3394] 1.9047 1 EK-Excess Kurtosis;* Q-Statistics on Standardized Residuals with 50 lags; ** Q-Statistics on Squared Standardized Residuals 50 lags; *** ARCH test with 5 lags; P-values in brackets. In-sample model evaluation. Residual tests. FIGARCH models. Model SBC Skewness EK1 Q* Q2** ARCH*** Nyblom ARMA (0,0) FIGARCH(1,d,1) Skewed-Student 2.222089 0.76305 3.8723 37.4681 [0.9046084] 28.4572 [0.9888560] 1.2601 [0.2790] 1.56799 ARMA (0,0) FIGARCH(1,d,1) Student* 2.22472 0.74698 3.7313 37.7303 [0.8991133] 28.9803 [0.9864387] 1.3297 [0.2491] 1.37719 ARFIMA (1,d,0) FIGARCH(1,d,1) Skewed-Student 2.226549 0.757 3.9242 36.3540 [0.9096502] 29.8994 [0.9811947] 1.3204 [0.2529] 2.05757 ARFIMA (1,d,0) FIGARCH(1,d,1) Student 2.228334 0.73378 3.7256 36.1801 [0.9131002] 30.4315 [0.9775013] 1.3272 [0.2501] 1.82764 ARFIMA (0,d,1) FIGARCH(1,d,1) Skewed-Student 2.227516 0.75901 3.96 36.2611 [0.9115043] 29.2088 [0.9852596] 1.2729 [0.2733] 2.0233 ARFIMA (0,d,1) FIGARCH(1,d,1) Student 2.229199 0.73799 3.7813 36.1313 [0.9140531] 29.5586 [0.9832983] 1.2630 [0.2777] 1.79097 1 EK-Excess Kurtosis;* Q-Statistics on Standardized Residuals with 50 lags; ** Q-Statistics on Squared Standardized Residuals 50 lags; *** ARCH test with 5 lags; P-values in brackets. Out-of-sample Forecast Evaluation Forecast methodology - sample window: 1018 observations - at each step, the 1 step ahead dynamic forecast is stored for the conditional variance and the conditional mean -dynamic forecast is programmed in OxEdit [email protected] package Benchmark: ex-post volatility = squared returns. Measuring Forecast Accuracy. The Mincer-Zarnowitz regression: The Mean Absolute Error: 2 2 ˆ t alfa beta t ut 1 n MAE t2 ˆ t2 n t 1 n Root Mean Square Error RMSE (standard error): n Theil's inequality coefficient -Theil's U: U ( t 1 2 t ˆ t2 ) 2 n 2 2 2 ˆ ( t t ) t 1 n 2 2 2 ( t 1 t ) t 1 One Step Ahead Forecast Evaluation Measures. 1. The Mincer-Zarnowitz regression Model alfa beta R2 Model alfa beta R2 ARMA (0,0) GARCH(1,1) Skewed-Student -0.104961 [0.0699] 0.624769 [0.0006] 0.0533211 ARMA (0,0) FIGARCH(1,d,1) Skewed-Student -0.038611 [0.3070] 0.741465 [0.0005] 0.0822328 ARMA (0,0) GARCH(1,1) Student -0.100843 [0.0766] 0.617284 [0.0007] 0.0530545 ARMA (0,0) FIGARCH(1,d,1) Student -0.037921 [0.3143] 0.725906 [0.0005] 0.0793558 ARFIMA (1,d,0) GARCH(1,1) Skewed-Student -0.112153 [0.0607] 0.631864 [0.0006] 0.0518779 ARFIMA (1,d,0) FIGARCH(1,d,1) Skewed-Student -0.046087 [0.2517] 0.730264 [0.0006] 0.0759213 ARFIMA (1,d,0) GARCH(1,1) Student -0.104983 [0.0698] 0.620363 [0.0006] 0.0522936 ARFIMA (1,d,0) FIGARCH(1,d,1) Student -0.043940 [0.2681] 0.707455 [0.0006] 0.0735089 ARFIMA (0,d,1) GARCH(1,1) Skewed-Student -0.112613 [0.0596] 0.634110 [0.0006] 0.052295 ARFIMA (0,d,1) FIGARCH(1,d,1) Skewed-Student -0.045701 [0.254] 0.731791 [0.0006] 0.0765561 ARFIMA (0,d,1) GARCH(1,1) Student -0.105667 [0.0680] 0.623092 [0.0006] 0.0527494 ARFIMA (0,d,1) FIGARCH(1,d,1) Student -0.043431 [0.2715] 0.70931 [0.0006] 0.0742364 2. Forecasting the conditional mean. Loss functions. Model MAE RMSE ARMA (0,0) GARCH(1,1) Skewed-Student 0.2601 0.3412 ARMA (0,0) GARCH(1,1) Student 0.2576 ARFIMA (1,d,0) GARCH(1,1) Skewed-Student TIC Model MAE RMSE TIC 0.7895 ARMA (0,0) FIGARCH(1,d,1) Skewed-Student 0.2606 0.3416 0.7861 0.3395 0.812 ARMA (0,0) FIGARCH(1,d,1) Student 0.258 0.3397 0.8086 0.2724 0.3521 0.7527 ARFIMA (1,d,0) FIGARCH(1,d,1) Skewed-Student 0.2726 0.3522 0.7518 ARFIMA (1,d,0) GARCH(1,1) Student 0.2694 0.3493 0.77 ARFIMA (1,d,0) FIGARCH(1,d,1) Student 0.2697 0.3496 0.7684 ARFIMA (0,d,1) GARCH(1,1) Skewed-Student 0.2722 0.352 0.7548 ARFIMA (0,d,1) FIGARCH(1,d,1) Skewed-Student 0.2724 0.3522 0.7536 ARFIMA (0,d,1) GARCH(1,1) Student 0.2691 0.3493 0.7729 ARFIMA (0,d,1) FIGARCH(1,d,1) Student 0.2694 0.3495 0.7711 3. Forecasting the conditional variance. Loss functions. Model MAE RMSE TIC Model MAE RMSE TIC ARMA (0,0) GARCH(1,1) Skewed-Student 0.2844 0.3148 0.5253 ARMA (0,0) FIGARCH(1,d,1) Skewed-Student 0.17 0.2234 0.484 ARMA (0,0) GARCH(1,1) Student 0.2824 0.3131 0.5244 ARMA (0,0) FIGARCH(1,d,1) Student 0.1726 0.2253 0.4845 ARFIMA (1,d,0) GARCH(1,1) Skewed-Student 0.2907 0.3204 0.5286 ARFIMA (1,d,0) FIGARCH(1,d,1) Skewed-Student 0.1802 0.2299 0.4856 ARFIMA (1,d,0) GARCH(1,1) Student 0.2866 0.3168 0.5265 ARFIMA (1,d,0) FIGARCH(1,d,1) Student 0.1832 0.2322 0.4861 ARFIMA (0,d,1) GARCH(1,1) Skewed-Student 0.2903 0.32 0.5283 ARFIMA (0,d,1) FIGARCH(1,d,1) Skewed-Student 0.1794 0.2294 0.4854 ARFIMA (0,d,1) GARCH(1,1) Student 0.2862 0.3164 0.5263 ARFIMA (0,d,1) FIGARCH(1,d,1) Student 0.1822 0.2315 0.4859 Concluding remarks. In-sample analysis: Residual tests: -all models may be appropriate. -the Student distribution is better than the Skewed Student. Out-of-sample analysis: -the FIGARCH models are superior. -for the conditional mean the Student distribution is superior. -the two ARFIMA mean equations don't provide a better forecast of the conditional mean. - for the conditional variance the Skewed Student distribution is superior. Concluding remarks. Model construction problems; Further research: -option prices, which reflect the market’s expectation of volatility over the remaining life span of the option. -daily realized volatility can be computed as the sum of squared intraday returns Bibliography Alexander, Carol (2001) – Market Models - A Guide to Financial Data Analysis, John Wiley &Sons, Ltd.; Andersen, T. G. and T. Bollerslev (1997) - Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts, International Economic Review; Andersen, T. G., T. Bollerslev, Francis X. Diebold and Paul Labys (2000)- Modeling and Forecasting Realized Volatility, the June 2000 Meeting of the Western Finance Association. Andersen, T. G., T. Bollerslev and Francis X. Diebold (2002)- Parametric and Nonparametric Volatility Measurement, Prepared for Yacine Aït-Sahalia and Lars Peter Hansen (eds.), Handbook of Financial Econometrics, North Holland. Andersen, T. G., T. Bollerslev and Peter Christoffersen (2004)-Volatility Forecasting, Rady School of Management at UCSD Baillie, R.T., Bollerslev T., Mikkelsen H.O. (1996)- Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, Vol. 74, No.1, pp. 330. Bollerslev, Tim, Robert F. Engle and Daniel B. Nelson (1994)– ARCH Models, Handbook of Econometrics, Volume 4, Chapter 49, North Holland; Diebold, Francis and Marc Nerlove (1989)-The Dynamics of Exchange Rate Volatility: A Multivariate Latent factor Arch Model, Journal of Applied Econometrics, Vol. 4, No.1. Diebold, Francis and Jose A. Lopez (1995)- Forecast Evaluation and Combination, Prepared for G.S. Maddala and C.R. Rao (eds.), Handbook of Statistics, North Holland. Enders W. (1995)- Applied Econometric Time Series, 1st Edition, New York: Wiley. Bibliography Engle, R.F. (1982) – Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation, Econometrica, 50, pp. 987-1007; Engle, R.F. and Victor K. Ng (1993) – Measuring and Testing the Impact of News on Volatility, The Journal of Finance, Vol. XLVIII, No. 5; Engle, R. (2001) – Garch 101: The Use of ARCH/GARCH Models in Applied Econometrics, Journal of Economic Perspectives – Volume 15, Number 4 – Fall 2001 – Pages 157-168; Engle, R. and A. J. Patton (2001) – What good is a volatility model?, Research Paper, Quantitative Finance, Volume 1, 237-245; Engle, R. (2001) – New Frontiers for ARCH Models, prepared for Conference on Volatility Modelling and Forecasting, Perth, Australia, September 2001; Hamilton, J.D. (1994) – Time Series Analysis, Princeton University Press; Lopez, J.A.(1999) – Evaluating the Predictive Accuracy of Volatility Models, Economic Research Deparment, Federal Reserve Bank of San Francisco; Peters, J. and S. Laurent (2001) – A Tutorial for G@RCH 2.3, a Complete Ox Package for Estimating and Forecasting ARCH Models; Peters, J. and S. Laurent (2002) – A Tutorial for G@RCH 2.3, a Complete Ox Package for Estimating and Forecasting ARCH Models; West, Kenneth and Dongchul Cho (1994)-The Predictive Ability of Several Models of Exchange Rate Volatility, NBER Technical Working Paper #152. Appendix 1. The ARMA (0, 0), GARCH (1, 1) Skewed Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability Constant(Mean) 0.091930 0.021613 4.253 0.0000 dummyFriday (V) 0.048977 0.019781 2.476 0.0134 ARCH(Alpha1) 0.036076 0.011561 3.121 0.0019 GARCH(Beta1) 0.924490 0.018052 51.21 0.0000 Asymmetry 0.145722 0.047250 3.084 0.0021 Tail 9.872213 3.3488 2.948 0.0033 For more details see Appendix 1, page 45. Appendix 2 The ARMA (0, 0), GARCH (1, 1) Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-alue Probability Constant(Mean) 0.077795 0.021673 3.589 0.0003 dummyFriday (V) 0.049240 0.020163 2.442 0.0148 ARCH(Alpha1) 0.037186 0.011975 3.105 0.0020 GARCH(Beta1) 0.923353 0.018479 49.97 0.0000 Student(DF) 8.921340 2.8119 3.173 0.0016 For more details, see Appendix 2, page 47. Appendix 3 The ARFIMA (1, da, 0),GARCH (1, 1) Skewed Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability 0.089939 0.010527 8.544 0.0000 -0.128224 0.045067 -2.845 0.0045 AR(1) 0.123269 0.054553 2.260 0.0241 dummyFriday (V) 0.048860 0.019703 2.480 0.0133 ARCH(Alpha1) 0.033897 0.011677 2.903 0.0038 GARCH(Beta1) 0.926283 0.018096 51.19 0.0000 Asymmetry 0.139771 0.047194 2.962 0.0031 Tail 9.189523 2.9091 3.159 0.0016 Constant(Mean) d-Arfima For more details, see Appendix 3, page 49. Appendix 4 The ARFIMA (1, da, 0),GARCH (1, 1) Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probabilty 0.082711 0.010237 8.080 0.0000 -0.136317 0.045875 -2.971 0.0030 AR(1) 0.140455 0.055832 2.516 0.0120 dummyFriday (V) 0.049635 0.020117 2.467 0.0138 ARCH(Alpha1) 0.036517 0.012510 2.919 0.0036 GARCH(Beta1) 0.923503 0.018602 49.64 0.0000 Student(DF) 8.436809 2.5257 3.340 0.0009 Constant(Mean) d-Arfima For more details, see Appendix 4, page 52. Appendix 5 The ARFIMA (0, da,1),GARCH (1, 1) Skewed Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability Constant(Mean) 0.090415 0.011041 8.189 0.0000 d-Arfima -0.117757 0.037429 -3.146 0.0017 MA(1) 0.114844 0.046060 2.493 0.0128 dummyFriday (V) 0.048681 0.019787 2.460 0.0140 ARCH(Alpha1) 0.033847 0.011641 2.908 0.0037 GARCH(Beta1) 0.926414 0.018172 50.98 0.0000 Asymmetry 0.138631 0.047049 2.947 0.0033 Tail 9.279306 2.9613 3.134 0.0018 For more details, see Appendix 5, page 54. Appendix 6 The ARFIMA (0, da,1),GARCH (1, 1) Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability 0.082822 0.010833 7.645 0.0000 -0.122519 0.036843 -3.325 0.0009 MA(1) 0.128311 0.045146 2.842 0.0046 dummyFriday (V) 0.049380 0.020207 2.444 0.0147 ARCH(Alpha1) 0.036344 0.012449 2.919 0.0036 GARCH(Beta1) 0.923788 0.018703 49.39 0.0000 Student(DF) 8.516429 2.5689 3.315 0.0009 Constant(Mean) d-Arfima For more details, see Appendix 6, page 56. Appendix 7 The ARMA (0, 0), FIGARCH-BBM (1,d,1) Skewed Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability Constant(Mean) 0.094259 0.021931 4.298 0.0000 dummyFriday (V) 0.047278 0.025975 1.820 0.0690 d-Figarch 0.358622 0.098899 3.626 0.0003 ARCH(Alpha1) 0.288896 0.094598 3.054 0.0023 GARCH(Beta1) 0.635309 0.058513 10.86 0.0000 Asymmetry 0.147588 0.046529 3.172 0.0016 Tail 9.545031 3.0964 3.083 0.0021 For more details, see Appendix 7, page 59. Appendix 8 The ARMA (0, 0), FIGARCH-BBM (1,d,1) Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability Constant(Mean) 0.079807 0.021915 3.642 0.0003 dummyFriday (V) 0.049310 0.027926 1.766 0.0777 d-Figarch 0.351448 0.10506 3.345 0.0009 ARCH(Alpha1) 0.312018 0.11026 2.830 0.0047 GARCH(Beta1) 0.644842 0.057580 11.20 0.0000 Student(DF) 8.596805 2.6044 3.301 0.0010 For more details, see Appendix 8, page 61. Appendix 9 The ARFIMA (1,da,0), FIGARCH-BBM (1,d,1) Skewed Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability 0.090400 0.010719 8.434 0.0000 -0.126724 0.046241 -2.741 0.0062 AR(1) 0.119364 0.054745 2.180 0.0295 dummyFriday (V) 0.052164 0.030787 1.694 0.0905 d-Figarch 0.332074 0.10662 3.115 0.0019 ARCH(Alpha1) 0.339292 0.13642 2.487 0.0130 GARCH(Beta1) 0.649620 0.053779 12.08 0.0000 Asymmetry 0.139501 0.046638 2.991 0.0028 Tail 8.871259 2.6840 3.305 0.0010 Constant(Mean) d-Arfima For more details, see Appendix 9, page 63. Appendix 10 The ARFIMA (1,da,0), FIGARCH-BBM (1,d,1) Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability 0.083221 0.010263 8.109 0.0000 -0.136270 0.047181 -2.888 0.0040 AR(1) 0.138494 0.056208 2.464 0.0139 dummyFriday (V) 0.054562 0.034015 1.604 0.1090 d-Figarch 0.328545 0.12291 2.673 0.0076 ARCH(Alpha1) 0.360347 0.17155 2.101 0.0359 GARCH(Beta1) 0.659966 0.057997 11.38 0.0000 Student(DF) 8.093551 2.3226 3.485 0.0005 Constant(Mean) d-Arfima For more details, see Appendix 10, page 66. Appendix 11 The ARFIMA (0,da,1), FIGARCH-BBM (1,d,1) Skewed Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability Constant(Mean) 0.090938 0.011202 8.118 0.0000 d-Arfima -0.117093 0.039118 -2.993 0.0028 MA(1) 0.112312 0.047184 2.380 0.0175 dummyFriday (V) 0.051724 0.030327 1.706 0.0884 d-Figarch 0.332759 0.10397 3.200 0.0014 ARCH(Alpha1) 0.334340 0.12765 2.619 0.0089 GARCH(Beta1) 0.647135 0.052822 12.25 0.0000 Asymmetry 0.138659 0.046925 2.955 0.0032 Tail 8.973744 2.7438 3.270 0.0011 For more details, see Appendix 11, page 68. Appendix 12 The ARFIMA (0,da,1), FIGARCH-BBM (1,d,1) Student model. Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value Probability 0.083434 0.010870 7.675 0.0000 -0.122620 0.038276 -3.204 0.0014 MA(1) 0.126887 0.045925 2.763 0.0058 dummyFriday (V) 0.054060 0.033155 1.631 0.1033 d-Figarch 0.329579 0.11765 2.801 0.0052 ARCH(Alpha1) 0.353442 0.15661 2.257 0.0242 GARCH(Beta1) 0.656630 0.055867 11.75 0.0000 Student(DF) 8.182206 2.3695 3.453 0.0006 Cst(M) d-Arfima For more details, see Appendix 12, page 70. Stationarity tests. Appendix 13. 1. Dickey-Fuller Test. Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURNS) Method: Least Squares Date: 06/26/04 Time: 07:50 Sample(adjusted): 3 1384 Included observations: 1382 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. RETURNS(-1) -0.957262 0.026883 -35.60834 0.0000 C 0.078392 0.018264 4.292148 0.0000 R-squared 0.478843 Mean dependent var -0.000589 Adjusted R-squared 0.478465 S.D. dependent var 0.933223 S.E. of regression 0.673949 Akaike info criterion 2.050121 Sum squared resid 626.8057 Schwarz criterion 2.057692 F-statistic 1267.954 Prob(F-statistic) 0.000000 Log likelihood Durbin-Watson stat -1414.634 1.994863 ADF Test -17.25675 1% Critical Value* -3.4380 Dependent Variable: D(RETURNS) Method: Least Squares Sample(adjusted): 7 1384 Included observations: 1378 after adjusting endpoints 5% Critical Value 10% Critical Value -2.8641 -2.5681 *MacKinnon critical values for rejection of hypothesis of a unit root. Variable Coefficient Std. Error t-Statistic Prob. RETURNS(-1) -1.047183 0.060682 -17.25675 0.0000 D(RETURNS(-1)) 0.091319 0.053927 1.693396 0.0906 D(RETURNS(-2)) 0.039379 0.046166 0.852989 0.3938 D(RETURNS(-3)) 0.009635 0.037319 0.258186 0.7963 D(RETURNS(-4)) 0.015333 0.026967 0.568585 0.5697 C 0.086684 0.018835 4.602399 0.0000 R-squared 0.480683 Mean dependent var 0.000495 Adjusted R-squared 0.478791 S.D. dependent var 0.933787 S.E. of regression 0.674146 Akaike info criterion 2.053604 Sum squared resid 623.5364 Schwarz criterion 2.076369 F-statistic 253.9867 Prob(F-statistic) 0.000000 Log likelihood Appendix 14. ADF Test. Durbin-Watson stat -1408.933 1.998880 Appendix 15.Phillips-Perron Test. Lag truncation for Bartlett kernel: 7 ( Newey-West suggests: 7 ) Residual variance with no correction 0.453550 Residual variance with correction 0.407637 Phillips-Perron Test Equation Dependent Variable: D(RETURNS) Method: Least Squares Sample(adjusted): 3 1384 Included observations: 1382 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. RETURNS(-1) -0.957262 0.026883 -35.60834 0.0000 C 0.078392 0.018264 4.292148 0.0000 R-squared 0.478843 Mean dependent var -0.000589 Adjusted R-squared 0.478465 S.D. dependent var 0.933223 S.E. of regression 0.673949 Akaike info criterion 2.050121 Sum squared resid 626.8057 Schwarz criterion 2.057692 F-statistic 1267.954 Prob(F-statistic) 0.000000 Log likelihood Durbin-Watson stat -1414.634 1.994863