Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Application of Monte Carlo Methods for Process Modeling John Kauffman, Changning Guo FDA\CDER Division of Pharmaceutical Analysis Jean-Marie Geoffroy Takeda Global Research and Development The opinions expressed in this presentation are those of the authors, and do not necessarily represent the opinions or policies of the FDA. 1 Outline 1. Why propagate uncertainty in regressionbased process models? 2. Why use Monte Carlo (MC) simulation? 3. Why solve regression models with MC? 2 What is Design Space? • Design space is “the multidimensional combination and interaction of input variables and process parameters that have been demonstrated to provide assurance of quality”. (ICH Q8) • Process modeling (DOE) is a central component of design space determination. 3 Design Space Schematic Knowledge Space Parameter #1 Parameter #2 4 Design Space Schematic with uncertainty Knowledge Space Parameter #1 Parameter #2 5 Case Study #1: Modeling 45 minute dissolution (D45) of a tableting process • 32 Factorial Experimental Design – Granulating Water (GS: 36-38 kg) – Granulating Power (P: 18.5-22.5 kW) • Nested Compression Factors – Compression Force (CF: 11.5-17.5 kN) – Press Speed (S: 70-110 kTPH) • Least Squares Predictive Model* D45 = 68.35 – 1.34(GS) – 2.88(P) - 8.95(CF) + 2.43(GS)2 * Parameter values are mean-centered and range-scaled. Publication Reference Application of Quality by Design Knowledge (QbD) From Site Transfers to Commercial Operations Already in Progress,” J. PAT, Jan/Feb, pg. 8, 2006. 6 Diagram of Experimental Design speed force 38 granulation water (kg) 37 36 18.5 20.5 granulation power (kW) 22.5 7 Experimentation and Process Modeling D45exp 1 GSexp 1 Pexp 1 CFexp 1 D45exp 2 GSexp 2 Pexp 2 CFexp 2 D45exp 3 GSexp 3 Pexp 3 CFexp 3 8 Experimentation and Process Modeling D45pred 1 = B0 + B1·GSexp 1 + B2·Pexp 1 + B3·CFexp 1 + B4·GS2exp 1 D45pred 2 = B0 + B1·GSexp 2 + B2·Pexp 2 + B3·CFexp 2 + B4·GS2exp 2 D45pred 3 = B0 + B1·GSexp 3 + B2·Pexp 3 + B3·CFexp 3 + B4·GS2exp 3 Propagation of uncertainty in process model predictions: All Model Coefficient variances and Process Variable variances contribute to each predicted Response uncertainty in a model-dependent manner. 9 Propagation of Uncertainty in Regression Modeling • What procedures can be used to estimate uncertainty in design space? • What is the benefit of propagating uncertainty using Monte Carlo simulation? 10 The Process Model: Matrix Representation D45pred 1 1 GSexp 1 Pexp 1 CFexp 1 GS2exp 1 B0 D45pred 2 1 GSexp 2 Pexp 2 CFexp 2 GS2exp 2 B1 1 GSexp 3 Pexp 3 CFexp 3 GS2exp 3 B2 D45pred 3 = B3 Response Design B matrix matrix matrix B4 R = DB 11 Least Squares Solution to a Process Model Matrix Representation of Process Model: R = DB Define the pseudoinverse of D: D† = (DTD)-1DT Solving for the Model Coefficients: D †R = B The pseudoinverse solution of a matrix equation gives the least squares best estimates of the B coefficients! 12 Estimating Variance in Prediction: The Basis for Uncertainty in Design Space Response Covariance matrix Cov(R) = B[Cov(D)]BT Jth experimental variance = Jth diagonal element of Cov(R) Assumptions: Only D has uncertainty. Problems: 1.) We know that B has uncertainty. 2.) We know that uncertainties in D will be correlated, but we don’t know Cov(D) 13 Estimating Variance of Process Model Regression Coefficients Model coefficient Covariance matrix Response variance ( p = # model coefficients N = # experiments) TD]-1 †T Cov(B)=[D dR Cov(B)=D†[Cov(R)]D 2 N dR = S 2 i=1 (Ri – ^Ri)2 N-p Jth Model coefficient variance = Jth diagonal element of Cov(B) Assumptions: Only R has uncertainty; Errors uncorrelated and constant Problems: 1.) We know that D (matrix of input variables) has uncertainty. 2.) We suspect that uncertainties may be correlated. 14 Monte Carlo Methods • Develop a mathematical model. – The Process Model. • Add random variables. – Replace quantities of interest with random numbers selected from appropriate distribution functions that are expected to describe the variables. • Monitor selected output variables. – Output variables become distributions whose properties are determined by the model and the distributions of the random variables. • Advantage #1: We make no assumptions concerning sources of uncertainty or covariance between variables. 15 Case Study #1: Influence of Process Parameter Variation on Prediction • Model Conditions – – – – – GS mean = 36 kg P mean = 20 kW CF mean = 14 kN Input parameter standard deviations were varied. Dissolution values were predicted. 16 Example: Simulation 1 Distribution for Water (kg) Distribution for Power (kW) 1.8 Distribution for Force (kN) 0.45 1.6 0.4 0.4 1.4 0.35 0.35 1.2 0.3 0.3 0.25 1 0.25 0.8 0.2 0.2 0.6 0.15 0.15 0.4 0.1 0.1 0.2 0.05 0.05 0 0 0 35 35.5 36 36.5 GS Mean = 36 kg Std. Dev. = 0.25 kg 37 15 D45 Simulation #1 0.45 17.5 20 22.5 P Mean = 20 kW Std. Dev. = 1 kW 25 0.12 0.1 0.08 0.06 0.04 0.02 9 12 15 CF Mean = 14 kN Std. Dev. = 1 kN 0 18 60 70 80 90 100 D45 Simulation Result Mean = 74.6% Std. Dev. = 3.70% D45 = 68.35 – 1.34(GS) – 2.88(P) - 8.95(CF) + 2.43(GS)2 17 Example: Simulations 1-4 D45 Simulation Mean = 74.6% Std. Dev. = 3.70% D45 Simulation Mean = 75.0% Std. Dev. = 4.59% 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 60 60 60 60 70 70 70 70 D45 Simulation #4 90 90 90 90 100 100 100 100 GS Std. Dev.=1 kg P Std. Dev.=1 kW CF Std. Dev.= 1 kN D45 Std. Dev.= 0% 80 D45 Simulation #3 80 D45 Simulation #2 80 D45 Simulation #1 80 GS Std. Dev.=0.5 kg P Std. Dev.=1 kW CF Std. Dev.= 1 kN D45 Std. Dev.= 0% D45 Simulation Mean = 76.9% Std. Dev. = 8.26% 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.1 0.12 0.08 0.06 0.04 0.02 0 0.12 0.1 0.08 0.06 0.04 0.02 0 GS Std. Dev.=0.25 kg P Std. Dev.=1 kW CF Std. Dev.= 1 kN D45 Std. Dev.= 0% D45 Simulation Mean = 76.9% Std. Dev. = 7.89% GS Std. Dev.=1 kg P Std. Dev.=2 kW CF Std. Dev.= 1 kN D45 Std. Dev.= 0% 18 Influence of Process Parameters Variation • Increase in granulation water mass (GS) variance: – Increases predicted D45 variance. – Slightly shifts predicted D45 means. – Skews the predicted D45 distributions. • Increase in granulator power (P) endpoint variance: – Increases predicted D45 variance. – Does not shift predicted D45 means. – Does not skew the predicted D45 distributions. 19 Influence of Dissolution Measurement Error • Model Conditions – – – – – – GS mean = 36 kg P mean = 20 kW CF mean = 14 kN Input parameter standard deviations were varied. Dissolution measurement error was added. Dissolution values were predicted. 20 Example: Simulations 5-7 D45 Simulation Mean = 75.0% Std. Dev. = 3.88% D45 Simulation Mean = 75.0% Std. Dev. = 4.37% D45 Simulation Mean = 75.0% Std. Dev. = 5.58% D45 Simulation Mean = 75.0% Std. Dev. = 7.16% 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.1 0.12 0.08 0.06 0.04 0.02 0 0.14 0.1 0.12 0.08 0.06 0.04 0.02 0 50 50 50 50 60 60 64 65 Simulation #7 78 Simulation #6 70 Simulation #5 80 80 80 Simulaton 5-7 Control 70 90 90 92 95 100 100 GS Std. Dev=0.5 kg P Std. Dev=1 kW CF Std. Dev=0.5 kN D45 Std. Dev=0% (Control) GS Std. Dev=0.5 kg P Std. Dev=1 kW CF Std. Dev=0.5 kN D45 Std. Dev=2% GS Std. Dev=0.5 kg P Std. Dev=1 kW CF Std. Dev=0.5 kN D45 Std. Dev=4% GS Std. Dev=0.5 kg P Std. Dev=1 kW CF Std. Dev=0.5 kN D45 Std. Dev=6% 21 Influence of Dissolution Measurement Error • Increase in D45 measurement variance: – does not shift predicted D45 means. – does not appear to skew predicted D45 distributions. – increases predicted D45 variance. • Advantage #2, we get the distribution, not just the standard deviation. • Advantage #3, sensitivity analysis allows us to prioritize process improvement. 22 Measurement Uncertainty and Prediction Uncertainty D45(%) Experiment Measured Mean Model Prediction Measured St. Dev. 1 69.0 69.2 3.1 2 73.5 72.3 3.1 3 71.9 72.1 1.9 4 67.1 65.5 2.9 5 69.8 71.2 1.9 6 75.5 75.0 0.8 7 65.4 66.6 2.7 8 75.8 77.3 1.1 9 56.1 59.4 3.7 10 61.0 59.4 3.7 11 67.2 68.3 2.4 Benchmark 12 77.0 77.3 1.1 13 72.7 68.3 2.4 Standard Error of Prediction 2.4 Standard Error (RMS Measurement Standard Deviation) 2.6 23 Monte Carlo Prediction Error D45 Measurement Random N= 6 Coefficients B matrix B Std. Dev. Random R Std. Dev. Response P Std. Dev. GS Std. Dev. CF Std. Dev. Std. Error of Std. Error Prediction 2.6% Random Inputs D45 Monte Carlo Simulation Parameters #1 #2 #3 #4 6 10000 10000 6 regression regression regression regression regression regression regression 0 0 0 0 1.7% 0 0 0.5 0.5 0 0 0.25 0.25 0 0 0.5 0.5 1.7% 1.6% 2.6% 2.5% Result using estimated coefficient St. Dev. 24 Prediction Error Based on Estimated Coefficient Standard Deviations • Estimated model coefficient standard deviations do not predict the observed response uncertainty. • Can we use Monte Carlo simulation to provide better estimates of model coefficient standard deviations? 25 Propagation of Uncertainty in Process Modeling The pseudoinverse of D: D†=(DTD)-1DT Solving for the Model Coefficients: D†R=B B1 = D†11·RExp 1 + D†12·RExp 2 + D†13·RExp 3 +… B2 = D†21·RExp 1 + D†22·RExp 2 + D†23·RExp 3 +… 1. Assign random variables to Dissolution values (R) and use Monte Carlo simulations to propagate error to the model coefficients (B). 2. Assign random variables to Process Parameters (D) and use Monte Carlo simulations to propagate error to B. 26 How Do Variances in Process Parameters Influence Model Coefficients? • Simulation # 1 (1-0.25-1) – – – – Measured D45 means and standard deviations. P 19-23 kW ± 1 kW GS 36-38 kg ± 0.25 kg CF 12-18 ± 1 kN • Compare to regression distributions – Model coefficient means – Model coefficient standard deviations 27 Regression Ran. Input How Do Variances in Process Parameters Influence Model Coefficients? Bias Coefficient Power Coefficient 0.5 Water Coefficient 0.4 0.45 0.35 2 Force Coefficient 0.35 Water Coefficient 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.3 0.25 0.4 0.3 0.35 0.2 0.25 0.3 0.25 0.2 0.15 0.15 0.2 0.15 0.15 0.1 0.15 0.1 0.1 0.1 0.05 0.05 0.1 0.05 0.05 0 0 64 67 70 73 0 -8 -6 Bias Coefficient -4 -2 0 2 4 -8 -6 -4 Power Coefficient 0.55 0.5 -2 0 2 4 0 -16 6 0.05 0 -14 -12 Water Coefficient 0.9 0.4 0.8 0.35 -10 -8 -6 -4 -2 0.7 0 2 4 6 8 10 6 8 10 2 Water Coefficient 0.35 0.3 0.3 0.4 0.6 0.35 -2 Force Coefficient 1.2 1 0.45 -4 0.25 0.8 0.25 0.3 0.5 0.25 0.4 0.2 0.2 0.6 0.15 0.15 0.2 0.3 0.4 0.15 0.1 0.1 0.2 0.1 0.2 0.05 0 64 65 66 67 68 69 70 “Bias” 71 72 73 0.05 0.05 0.1 0 -3.5 0 -2.375 -1.25 -0.125 Power (P) 1 0 -7 -6 -5 -4 -3 -2 -1 0 1 2 Water (GS) 3 4 0 -5 -4 -3 -2 Force (CF) -1 -4 -2 0 2 4 Water2 Increase in process parameter variance causes a shift in some model coefficients. Increase in process parameter variance increases model coefficient variance. 28 How Do Variances in Process Parameters Influence Model Coefficients? – – – – Simulation # 1 (1-.25-1) Simulation # 2 (1-0.5-1) Simulation # 3 ( 1-1-1) Simulation # 4 ( 2-1-1) • Increasing input parameter variance: – increases variance in the model coefficients. – can skew the model coefficient distribution. – can shift model coefficient means. 29 Estimated Model Coefficient Uncertainties from Monte Carlo Simulation P Std. Dev. GS Std. Dev. CF Std. Dev. R Std. Dev. B0 B(GS) B(P) B(CF) B(GS^2) Std. Error of Std. Error Prediction Regression 68.35 ± 0.83 -1.34 ± 1.07 -2.88 ± 0.96 -8.95 ± 1.17 2.44 ± 1.35 1.6% Monte Carlo Simulation Parameters #1 #2 #3 #4 1 1 0.5 0.25 0.25 0.25 1 1 0.5 measured measured 2.5% 68.35 ± 0.93 68.41 ± 1.06 68.39 ± 1.44 68.39 ± 0.9 -1.34 ± 1.21 -1.23 ± 1.49 -1.22 ± 1.96 -1.24 ± 1.28 -2.88 ± 1.04 -2.13 ± 1.18 -2.11 ± 1.53 -2.63 ± 1.06 -8.95 ± 1.38 -7.37 ± 1.35 -7.37 ± 1.87 -8.52 ± 1.2 2.44 ± 1.52 2.13 ± 1.84 2.14 ± 2.43 2.15 ± 1.57 1.8% 2.1% 2.8% 1.8% 30 Case Study #2: Nasal Spray Performance Models • A nasal spray product is a combination of a therapeutic formulation and a delivery device. • 3-level, 4-factor Box-Behnken designs – – – Pfeiffer nasal spray pump Placebo formulations (CMC & Tween 80 solutions) Reference: • • Changning Guo, Keith J. Stine, John F. Kauffman, William H. Doub. 2008 “Assessment of the influence factors on in vitro testing of nasal sprays using Box-Behnken experimental design”, European Journal of Pharmaceutical Sciences 35 (12 ) 417–426 Changning Guo, Wei Ye, John F. Kauffman, William H. Doub. “Evaluation of Impaction Force of Nasal Sprays and Metered-Dose Inhalers Using the Texture Analyser.” Journal of Pharmaceutical Sciences. In press 31 Response Variables Parameters used to describe the shape of a nasal spray plume: spray pattern area, plume width. Spray Pattern: measures the cross sectional uniformity of the spray Plume geometry: measures the side view of a spray plume at its fully developed phase 32 Response Variables • Droplet Size Distribution 100 2.2 90 2.0 80 1.8 1.6 70 1.4 60 1.2 50 1.0 40 0.8 30 0.6 20 0.4 10 0.2 0 0.10 Density distribution q3* Cumulative distribution Q3 / % – Volume Median Diameter D50 0 0.5 1 5 10 particle size / µm 50 100 • Impaction Force 33 Nasal Spray Response Models • Optimized regression models Responses Prediction Equations R2 Spray Pattern Area R 338 47 S 156V 279C 89VC 54V 2 148C 2 0.97 Plume Width R 26.7 8.3V 8.1C 4.3V 2 4.3C 2 0.96 D50 R 34.5 27.6V 19.6C 27.1VC 20.8V 2 0.90 Impaction Force R 4.45 0.34S 1.51V 0.23T 0.41S 2 0.74V 2 0.94 34 Spray Pattern Model R 338 47 S 156V 279C 89VC 54V 2 148C 2 Spray pattern model term offset S V C VC 2 V 2 C regression Mean 338 47 156 -279 -89 -54 148 Std. Dev. 15 13 13 13 23 18 18 Random R Mean 338 46 155 -279 -89 -54 148 Std. Dev. 4 4 3 5 7 5 5 Random D Mean 338 46 155 -279 -89 -54 148 Std. Dev. 4 4 4 4 7 6 5 Random R&D Std. Mean Dev. 338 5 46 5 155 4 -279 6 -89 8 -54 7 148 7 Variances from input variables and spray pattern area measurements have similar level of influence on the model coefficients. 35 Plume Width Model R 26.7 8.3V 8.1C 4.3V 2 4.3C 2 Plume Geometry model term offset V C V2 C2 regression Std. Mean Dev. 26.7 8.3 -8.1 -4.4 4.4 0.6 0.5 0.5 0.8 0.7 Random R Std. Mean Dev. 26.7 8.3 -8.1 -40.4 4.4 0.3 0.3 0.3 0.4 0.4 Random D Std. Mean Dev. 26.7 8.3 -8.1 -4.3 4.4 0.2 0.1 0.1 0.2 0.2 Random R&D Std. Mean Dev. 26.7 8.3 -8.1 -4.3 4.4 0.3 0.4 0.3 0.4 0.4 Variance from plume width measurements have more influence on the model coefficients than those from the input variables. 36 Droplet Size Model – D50 D50 34.5 27.6V 19.6C 27.1VC 20.8V 2 offset V C VC V2 Random R only Random D only Random R&D Variance from input variables have more influence on the model coefficients than those from the D50 measurements. 37 Impaction Force Model R 4.45 0.34S 1.51V 0.23T 0.41S 2 0.74V 2 force offset S V T 2 S 2 V regression Std. Mean Dev. 4.44 0.11 0.34 0.09 1.51 0.09 0.23 0.09 0.41 0.13 -0.72 0.12 Random R Std. Mean Dev. 4.44 0.04 0.34 0.04 1.51 0.03 0.23 0.04 0.41 0.05 -0.72 0.04 Random D Std. Mean Dev. 4.45 0.04 0.33 0.04 1.50 0.03 0.23 0.03 0.39 0.06 -0.72 0.04 Random R&D Std. Mean Dev. 4.45 0.06 0.33 0.06 1.50 0.04 0.23 0.05 0.39 0.07 -0.72 0.08 Variances from input variables and impaction force measurements have similar level of influence on the model coefficients. 38 How Do Variances in Formulation and Actuation Influence Model Coefficients? • The means of model coefficients show good agreement between regression results and Monte Carlo simulations • The standard deviations of model coefficients obtained from regression results are larger than those from Monte Carlo simulation. – The estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. – Regression based coefficient standard deviations in defining design space may result in a smaller selection range of input variable values that are necessary to meet the desired confidence level. 39 Advantages of Monte Carlo Simulation 1. We make no assumptions concerning sources of uncertainty or variable covariance. 2. We see the distribution of output variable values, not just a standard deviation. 3. Sensitivity analysis allows us to prioritize high risk input variables and improve process control. 40