Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The Optimal Atmospheric CO2 Concentration For the Growth of Winter Wheat (Triticum aestivum) Ming Xu Rutgers University Chinese Academy of Sciences Email: [email protected] Agri-2015, July 13-15, Beijing The Greenhouse Effect Greenhouse Gasses (Big 3!) Climate Change Impacts The HUGE climate challenge !!! CO2 Emissions from Fossil Burning Projections of Sea Level Rising Atmospheric CO2 concentration: Past, present and future (Data from CMIP5-RCP8.5) of IPCC-AR5) 2000 Atmospheric CO2 concentration (ppm) 1800 1600 1400 1200 1000 800 600 400 200 0 1750 1800 1850 1900 1950 2000 2050 Year 2100 2150 2200 2250 2300 CO2 fertilization Effect: Food for Plants Photosynthesis CO2 + H2O • Raw material for photosynthesis • Higher CO2 concentration higher reaction rate • Confirmed by experiments and models Respiration (CH2O)n + O2 Net Impacts Climate change impacts CO2 fertilization effects CO2 Fertilization Effect ? ? ? CO2 Concentration (ppm) CO2 fertilization saturation Effect CO2 Fertilization Effect Up to 2300 ppm Amthor 2001 890ppm Environmental Growth Chamber Plants after germination (1 week) PVC pipe wrapped with duct tape on dish Plants After Germination (2 weeks) 8 pots in each chamber CO2 Controlling System Five growth chambers with CO2 concentration regulated to 400, 600, 800, 1000, and 1200 ppm with CO2 tanks (high purity 99.99%) Growth chamber control loop Other Environmental Factors • • • • • Temperature: 21oC Humidity: 60-70% Light intensity: 1000 μmol m-2 s-1 PAR, 6am-8pm Soil type: fritted clay Water amount: 200 ml/pot, watered every other day • Water type: plain tap water • Fertilization: half-strength Hoagland’s solution once weekly Plants After Germination (2 Weeks) Nail varnish mold peeled off with tweezers Nail varnish mold is mounted onto clear microslide Slide under Nikon Eclipse 80i Microscope Picture in Autodesk Inventor where stomata lengths are traced with Line Tool and dimensioned A B Figure 4. Measurements of leaf gas exchange (A) and leaf stomatal size and density (B, C) C Thelco Laboratory Oven used to dry plant leaves Laboratory oven settings and values Effects of CO2 enrichment on biomass growth of winter wheat 16 894.2ppm 14 Biomass (grams/pot) 12 y = -2.93E-05x2 + 5.24E-02x - 1.00E+01 R² = 0.95 10 889.6ppm 8 y = -1.54E-05x2 + 2.74E-02x - 4.03E+00 R² = 0.97 Xu 2015, J. Plant Physiology 6 909.4ppm y = -1.38E-05x2 + 2.51E-02x - 6.02E+00 R² = 0.87 4 2 Aboveground Root 700 900 Total 0 300 400 500 600 800 CO2 Concentration (ppm) 1000 1100 1200 1300 Diminishing of CO2 fertilization effect with the increase of CO2 concentration 0.03 CO2 fertilization effect (g biomass/ppm CO2) 0.025 0.02 0.015 0.01 0.005 0 400 -0.005 500 600 700 800 900 1000 1100 CO2 concentration (ppm) -0.01 -0.015 -0.02 Root Aboveground Total biomass 1200 CO2effects on plant height and leaf characteristics of winter wheat 60 10 Leaf Length Leaf width a 50 9 a a b a 40 a a b a a c b 7 a a 8 a 30 6 5 4 20 3 2 10 1 0 0 400 600 800 CO2 concentration (ppm) 1000 1200 Leaf width (mm) Plant height and leaf length (cm) Plant height CO2 effects on leaf stomatal density Stomata density (stomata/mm2) 60 Abaxial Adaxial 55 y = -0.00001x2 + 0.00506x + 56.032 R² = 0.89 50 y = -0.00001x2 + 0.002x + 54.794 R² = 0.88 45 40 35 300 400 500 600 700 800 900 CO2 concentration (ppm) 1000 1100 1200 1300 CO2 effects on adaxial and abaxial stomata length 44 y = -0.00005728x2 + 0.09896x + 6.9319 R² = 0.95 Stomata length (µm) 42 Abaxial Adaxial 40 Abaxial Adaxial 38 y = -0.00005342x2 + 0.0925x + 8.8104 R² = 0.98 36 Optimal CO2 : 772 ppm Optimal CO2 : 776ppm 34 32 30 300 400 500 600 700 800 900 1000 CO2 Concentration (ppm) 1100 1200 1300 CO2 Effects on the Spatial Pattern of Stomatal Distribution on Leaf Surfaces 8 6 4 Lhat (d) 2 0 0 -2 50 100 150 200 250 300 350 400 Scale (μm) -4 -6 -8 Upper 95% Lower 95% 400 ppm 600 ppm 800 ppm 1000 ppm 1200 ppm -10 450 500 CO2 effects on net leaf photosynthetic rate under growth CO2 concentrations Net leaf photosynthetic rate (μmolCO2 m-2 s-1) 20 y = -0.0000287292x2 + 0.0556x - 10.7240 R² = 0.95 18 16 14 12 967.8 ppm 10 8 6 4 300 400 500 600 700 800 900 1000 1100 CO2 concentration (ppm) 1200 1300 Stomatal conductance (µmol CO2 m-2s-1Pa-1) CO2 effects on stomatal conductance measured under growth CO2 concentrations 1.5 y = -9E-07x2 + 0.0008x + 1.1926 R² = 0.98 1.4 1.3 1.2 444 ppm 1.1 1 0.9 0.8 300 400 500 600 700 800 900 1000 CO2 concentration (ppm) 1100 1200 1300 CO2 effects on the maximum carboxylation rate (Vcmax) 65 y = -6.89E-05x2 + 0.1235x + 2.7572 R² = 0.96 60 Vcmax (µmol CO2 m-2s-1) 55 50 895.5 ppm 45 40 35 30 300 400 500 600 700 800 900 1000 CO2 concentration (ppm) 1100 1200 1300 CO2 effects on the maximum electron transport rate (Jmax) 110 Jmax (µmol CO2 m-2s-1) 105 Min: 524 ppm 100 95 90 Max: 1041 ppm 85 80 y = -3.0447E-07x3 + 7.1467E-04x2 - 4.9825E-01x + 1.9158E+02 R² = 8.8485E-01 75 300 400 500 600 700 800 900 1000 CO2 Concentration (ppm) 1100 1200 1300 CO2 effects on the ratio of Vcmax to Jmax (Vcmax/Jmax) Conclusions 1. Initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect before reaching an optimum of about 900 ppm; 2. Further increase in CO2 concentration beyond this concentration substantially decreased the plant growth; 3. Elevating CO2 concentration not only reduced stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves, leading to more regular patterns. Acknowledgements Drs. Bingru Huang and Yali Song Drs. Patrick Burgess and Yunpu Zheng USDA-INFA ISE