Download V2.3_*

Document related concepts
no text concepts found
Transcript
2.3
2.3 Klimawandel durch Treibhauseffekt
.31 Das Klima der Erde hat sich geändert
.311 Temperatur .311a KlimaIndizes (El Nino, NAO )
.312 Niederschlag .313 Sea level .314 Gletscher .315 Arktisches Eis 3.16 Extreme 317 Übersicht
.32 The Identification of human Influence on Climate Change
Simulationen der globalen Temperatur lassen sich nicht alleine durch natürliche Strahlungsantriebe erklären
.33 Treibhausgase in der Atmosphäre
.331 Treibhausgase in der Atmosphäre seit der industriellen Revolution
.331a Wo bleibt das in die Atmosphäre emittierte fossile CO2 ?
.332 Atmospheric CO2 on different time-scales
.333 Strahlungsantrieb und Global Warming Potential (GWP)
.34 Modelle
.341 EBM- Energiebilanz Modell
. 342 Übersicht über kompliziertere Modelle
.35 Projektionen und Szenarien für das 21. Jahrhundert
. 351 “ Historische Perspektive“
. 352 Emissionsszenarien und die Komplexität der weiteren Entwicklung
. 353 Main Climate Changes
.36 Was tun? Erste Ansätze der Internationalen Gemeinschaft
2.31 Das Klima der Erde hat sich geändert
.311 Temperatur .311a KlimaIndizes (El Nino, NAO )
.312 Niederschlag .313 Sea level .314 Gletscher .315 Arktisches Eis 3.16 Extreme 317 Übersicht
„The Earth's climate system has changed,
globally and regionally
, with some these changes being attributable to human activities.“
Quelle: IPCC-TAR (2001)
AR4 wird schon deutlicher:
Direct Observations of Recent Climate Change
Warming of the climate system is unequivocal,
as is now evident from observations of increases
in global average air and ocean temperatures,
widespread melting of snow and ice, and rising
global mean sea level.
unequivocal = eindeutig
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
2.310 Zusammenfassung der wichtigsten Erfahrungen (2001)
•The Earth has warmed 0.6± 0.2 [K] since 1860 with the
last two decades being the warmest of the last century;
•The increase in surface temperatures over the 20th Century
for the Northern hemisphere is likely to be greater than
that for any other century in the last 1000 years;
•Precipitation patterns have changed with an increase in
heavy precipitation events in some regions;
•Sea level has risen 10-20 cm since 1900;
most non-polar glaciers are retreating; and
the extent and thickness of Arctic sea ice is decreasing in summer;
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary
Zusammenfassung der wichtigsten Erfahrungen (2007)
Global average Air temperature
•
•
Updated 100-year linear trend of
0.74 [0.56 to 0.92] oC for 1906-2005
Larger than corresponding trend of 0.6 [0.4 to 0.8] oC for 1901-2000 ( TAR)
Average Ocean temperature
•
increased to depths of at least 3000 m – ocean has absorbed 80% of heat added
> seawater expansion and SLR
At continental, regional, and ocean basin scales,
•
numerous long-term changes in climate have been observed:
– Changes in Arctic temperatures and ice,
– Widespread changes in precipitation amounts, ocean salinity, wind patterns
– and aspects of extreme weather including
droughts,
heavy precipitation,
heat waves
and the intensity of tropical cyclones
Quelle: IPCC- AR4-wg1, Vortrag Pachauri in Nairobi, 2007-0206
2.311 Temperatur
Global Mean Temperatures 1860-2001
Quelle: www.wmo.ch/web/Press/Press670.htm_graph1, erhalten 2002_0128; wmo_climate2001_fig1....jpeg /
9
‘98
‘95
‘90+1
‘44
‘01
-- + 0,4
‘83
-- 0
‘50
‘56
‘64
‘76
K
Aktueller Stand: Oberflächennahe Erdtemperatur
_____2005_1-11
Erhalten 2005_1221
Global mean temperatures are rising faster with time
Warmest 12 years:
1998,2005,2003,2002,2004,2006,
2001,1997,1995,1999,1990,2000
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
Period
Rate
50 0.1280.026
100 0.0740.018
Years /decade
Arctic vs Global annual temperature anomalies (°C)
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
Warming in the Arctic is
double that for the
globe from 19th to 21st
century and from late
1960s to present.
Warmth 1925 to 1950 in
Arctic was not as
widespread as recent
global warmth.
Note different scales
Ein Blick in die Stratosphäre
Global gemittelte Temperatur der Stratosphäre (16 - 24 km)
Anomalien 1960-2002
(relativ zu
Globaltemperatur
Stratosphäre
(161958-1977)
- 24 km),
Anomalien
1960
- 2002 (relativ
zu 1958 - 1977)
und einige
explosive
Vulkanausbrüche
und einige explosive Vulkanausbrüche
1
Temperaturanomalien in °C
K
Agung(1963+1)
Fernandia (1968+2)
0,5
Trend: - 1.89 °C
Trend:
- 1,9 °C
St. Augustine (1976)
El Chichón (1982)
0
Pinatubo (1991+1)
-0,5
-1
-1,5
-2
1960
1965
1970
1975
1980
1985
Zeit in Jahren
BQuelle:
DPG2005_SyKE1.4Schoenwiese_CC-imIndustriezeitalter.ppt
Datenquelle: Angell, 2004
1990
1995
2000
Beobachtete Temperaturen
innerhalb
der Atmosphäre
Temperatures shown as
monthly mean anomalies
relative to the period 1979 to 1997
smoothed
with a seven-month running mean filter.
Dashed lines indicate
the times of major volcanic eruptions.
{Figure 3.17}
BQuelle: IPCC_AR4wg1_TS: Fig TS.7, p.38
Langzeitperspektive:
Millennial Northern Hemisphere (NH)
Temperature from AD 1000-1999
Source:
Mann et al. 1999.
The 1990s were warmer than at anytime during the last 1000 years
Quelle: IPCC_2000_WatsonSpeech: Fig 1
Das war die berühmte „hockey stick“ Temperatukurve der Nordhalkugel
• Über dies berühmte Kurve von Mann e.a. aus dem IPCC –Report 2001 haben sich
viele Autoren mächtig aufgeregt.
Wichtigster Streitpunkt: War es im Hochmittelalter nicht doch etwas wärmer?
• Man beachte aber die breiten Fehlerbalken.
• Man kann die Ausgleichskurve natürlich auch etwas anders zeichnen, am grundsätzlichen Ergebnis ändert sich aber wenig.
Siehe Beispiel von Moberg e.a. (2005)
der sogar eine Darstellung von 0 – 2000 AD veröffentlicht hat
• Das mittelalterliche Klimaoptimum liegt dort geringfügig höher als bei Mann e.a.
und auf gleicher Höhe wie der als Referenz benutzte Mittelwert 1961-1990
Klimaänderungen: Langfristperspektive
(rel. zu 1961-1990)
Unsicherheit
Jahr
BQuelle: C.D.Schönwiese (2207):“Der neue wissenschaftliche Sachstandsbereicht des IPCC“;
AKE2007F-Vortrag , Folie 15
Übersicht über diverse Publikationen:
NordHemisphäre
Fazit: vielfältig, aber nicht grundlegend anders
BQuelle:Schär.“Treibhausgase und Klimaänderung“, Vortrag 2005-11 Nuklearforum Schweiz,
Langzeitaspekt: Nordhemisphäre - Temperatur
Rekonstruktionen
BQuelle:DPG2005_SyKE1.4Schoenwiese_
CC-imIndustriezeitalter.ppt
Modellsimulationen
Modellsimulationen
Mann und Jones, 2003
A Paleoclimatic Perspective
Paleoclimate information supports the interpretation that the
warmth of the last half century is
unusual in at least the previous 1300 years.
The last time the polar regions were significantly warmer than
present for an extended period (about 125,000 years ago, Eem),
reductions in polar ice volume led
to 4
to 6 metres of sea level rise.
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
The land and oceans have warmed
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 2
Land surface temperatures are rising faster than SSTs
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
SST
Land
2.311a Klima Oszillationen, Indizes
Air temperatures preferred patterns
Many regional climate changes can be described in terms of
preferred patterns of climate variability
and therefore as
changes in the occurrence of indices
that characterise the strength and phase of these
patterns.
2.311a Klima Oszillationen, Indizes
Patterns (Modes) of Climate Variability
A significant component of atmospheric and climatic variability can be described in terms of
fluctuations in the amplitude and sign of indices .
The best known of these indices of preferred patterns of variability are::
•El Niño-Southern Oscillation (ENSO),
a coupled fluctuation in the atmosphere and the equatorial Pacific Ocean,
with preferred time scales of 2 to about 7 years and global teleconnections.
ENSO is often measured by the difference in
surface pressure anomalies between Tahiti and Darwin
and
the SSTs
in the
central and eastern equatorial Pacific.
für uns eher „exotisch:
• Southern Annular Mode (SAM), the fluctuation of a pattern with low antarctic surface ressure and strong
mid-latitude westerlies, analogous to the NAM, but present year round.
• Pacific-North American (PNA) pattern, an atmospheric large-scale wave pattern featuring a sequence of
tropospheric high and low-pressure anomalies stretching from the subtropical west Pacific to the east coast
of North America.
• Pacific Decadal Oscillation (PDO), a measure of the SSTs in the North Pacific that has a very
strong correlation with the North Pacific Index (NPI) measure of the depth of the Aleutian Low. However, it
has a signature throughout much of the Pacific.
BQuelle: IPCC_AR4wg1_TechnicalSummary: Box TS.2, p.39
The frequency, persistence and magnitude of
El-Nino events has increased
El Niño years
La Niña years
*As shown by changes in sea-surface temperature (relative to the 1961-1990 average) for the
eastern tropical Pacific off Peru
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 6
ENSO: AR4 comments:
The 1976–1977 climate shift, related to the phase change in the Pacific
Decadal Oscillation (PDO) towards
more El Niño events and changes in the evolution of ENSO,
has affected many areas, including most tropical monsoons.
There is substantial low-frequency atmospheric variability
in the Pacific sector over the 20th century,
with extended periods of weakened (1900–1924; 1947– 1976) circulation
as well as
periods of strengthened (1925–1946;
{3.2, 3.5, 3.6}
BQuelle: IPCC_AR4wg1_TechnicalSummary:, p.38
1977–2003) circulation.
Patterns (Modes) of Climate Variability
• North
Atlantic Oscillation (NAO),
a measure of the strength of the Icelandic Low and the Azores High,
and of the westerly winds between them, mainly in winter.
The NAO has associated fluctuations in the
and
storm track,
temperature
precipitation
from the North Atlantic into Eurasia.
• Northern Annular Mode (NAM),
a winter fluctuation in the amplitude of a pattern characterised
by low surface pressure in the Arctic and strong mid-latitude westerlies.
The NAM has links with the northern polar vortex and hence the stratosphere.
BQuelle: IPCC_AR4wg1_TechnicalSummary: Box TS.2, p.39
Positive phase of NAM and
Changes associated
with the positive phase
of the NAO and NAM :
pressure
winds
precipitation changes.
Warm coloured areas
are
warmer than normal
Blue areas are
cooler than normal.
BQuelle: IPCC_AR4wg1_
TechnicalSummary: Box TS.2, Fig. 1; p.39
NAM
NAO
NAO
AR4 zum Nord-Atlantischen Wetter:
•
The characteristics of fluctuations in the zonally averaged westerlies
in the Northern Hemisphere have more recently been described by their
‘annular mode’, the
•
Northern Annular Mode (NAM).
The observed changes
can be expressed as a shift of the circulation
towards the structure
associated with one sign of the preferred pattern.
•
•
Increased mid-latitude westerlies
can be largely viewed as reflecting either NAO or NAM changes.
Multi-decadal variability is also evident in the Atlantic,
both in the atmosphere and the ocean.
Quelle: IPCC_AR4wg1_TechnicalSummary:, p.38
2.312 Niederschlag
Precipitation patterns have changed:
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 3
Changes in Precipitation, Increased Drought
• Significantly increased precipitation in eastern parts of
North and South America, northern Europe and northern
and central Asia.
• The frequency of heavy precipitation events has increased
over most land areas - consistent with warming and
increases of atmospheric water vapour
• Drying in the Sahel, the Mediterranean, southern Africa
and parts of southern Asia.
• More intense and longer droughts observed since the
1970s, particularly in the tropics and subtropics.
Land precipitation is changing significantly over broad areas
Increases
Decreases
Smoothed annual anomalies for precipitation (%) over land from
1900 to 2005; other regions are dominated by variability.
2.313
Observed change in sea level
(UK)
Stockholm
Liverpool
Time-series of relative sea level for the past 300 years from Northern Europe:
The scale bar indicates ±100 mm.
Stockholm, Sweden (detrended over the period 1774 to 1873 to remove to first order the contribution of post-glacial rebound);
Liverpool - Data are of “Adjusted Mean High Water” rather than Mean Sea Level and include a nodal (18.6 year) term.
[Based on Figure 11.7 of TAR1]
Quelle: IPCC_2001_TAR_TS: Fig 6
Anstieg der Meereshöhe seit dem letzten Glazial
Im 20. Jhd : + 1 bis 2 [mm/a] (aus Pegelmessungen)
Seit dem letzten Glazial:
vor 20 [ka], im Maximum des letzten Glazials :
Meereshöhe lag 120 m tiefer
(abseits von den Vereisungen)
danach Anstieg
vor 15 - 6 [ka] war die Zeit des stärksten Anstieges:
10 [mm/a]
die letzetn 6 [ka]: 0,5 [mm/a]
die letzetn 3 [ka]: 0,3 - 0,5 [mm/a]
Quelle: nach IPCC_2001_TAR_TS: p. 31+32
Einfügen: Abb: Meeresanstieg in den letzten 100 ka
Annual averages of the global mean sea level since 1870
mm
relative to the
average for
1961 to 1990
Error bars are 90% confidence intervals.
a
reconstructed sea level fields since 1870 (red),
tide gauge measurements since 1950 (blue)
and satellite altimetry since 1992 (black).
BQuelle: IPCC_AR4wg1_TechnicalSummary: Fig. TS.18, p.49,
[Fig 5.13 ]
Contributions to sea level rise: Observed and Modelled
1961 - 2003
1993 - 2003
BQuelle: IPCC_AR4wg1_TechnicalSummary: Table TS3 p.50,
2.314 Gletscher
A collection of 20
glacier length records
from different parts of the world.
Curves have been translated along the
vertical axis to make them fit in one frame.
Data are from the World Glacier Monitoring
Service (http://www.geo.unizh.ch/wgms/)
with some additions
from various unpublished sources
Length
(unit: 1km )
a
The geographical distribution of the data
(a single triangle may represent more than one glacier.
Quelle: nach IPCC_2001_TAR1; fig 2.18, p.128
Gletscher-Schwund in den Alpen
1900 und 2000.
Aufnahme der Pasterzenzunge mit Großglockner (3798 m)
Gesellschaft für ökologische Forschung, Wolfgang Zängl, http://www.gletscherarchiv.de
BQuelle:DLR_Schumann200_Klimawandel.ppt
Gletscher-Schwund in den Alpen
1900 und 2000.
Aufnahme der Pasterzenzunge mit Großglockner (3798 m)
Gesellschaft für ökologische Forschung, Wolfgang Zängl, http://www.gletscherarchiv.de
BQuelle:DLR_Schumann200_Klimawandel.ppt
Gletscher-Schwund in den Alpen
1900 und 2000.
Aufnahme der Pasterzenzunge mit Großglockner (3798 m)
Gesellschaft für ökologische Forschung, Wolfgang Zängl, http://www.gletscherarchiv.de
BQuelle:DLR_Schumann200_Klimawandel.ppt
Schmelzwasserspenden der Hochgebirge:
Verluste bis 2100 AD
heute
___________
2100 AD
©Pacific Northwest National Laboratory
Beispiele:
Alpenschnee: 61% bleiben übrig in 2100 AD
Neuseeland Alpen: 16%
~
~
Anden: 45% ~
~
UrQuelle:Ghan,SJ und Shippert,T.:“Physically Based Global Downscaling:CC Projections für a full Century, Jornal of Climate 19,No.9.pp1589-1604
BQuelle: SD842122_Bis-2100schmilzt-dieHäfte-desHochgebirge-Schnees
Schneedecken der Hochgebirge bis 2100 AD:
•
Die heutigen Abflussmengen (oben)
sind den Prognosen für 2100 gegenüber gestellt.
• Die Schmelzwasserspenden
in den Hochgebirge der Erde
werden in den kommenden Jahren
drastisch schrumpfen.
•
Südamerika, Europa, der Westen der USA und Neuseeland
sind am stärksten betroffen.
UrQuelle:Ghan,SJ und Shippert,T.:“Physically Based Global Downscaling:CC Projections für a full Century, Jornal of Climate 19,No.9.pp1589-1604
BQuelle: SD842122_Bis-2100schmilzt-dieHäfte-desHochgebirge-Schnees
2.315 Arktisches Eis
Arctic Sea Ice Melting since 1979
Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;
Arctic Sea Ice in 2003
Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;
1979:
An image based on satellite data shows
perennial ice cover in 1979,
when the ice extended over the
Arctic Ocean from edge to edge.
Since then the area of coverage has
decreased by 9% per decade
2003:
A similiar image from 2003 shows
dramatically
reduced perennial ice cover.
Large areas of open ocean have
appeared near Russia, Alaska and
Canada.
Some climate models project, that the
ice will be gone in summer
by the end of the century.
Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;
Quelle: The Big Thaw“,
National Geographic (2004), Heft 9, p.21;
Abschmelzen des arktischen Meereises
zwischen 1979 und 2005
©National Snow and Ice Data Center
Eindeutiger Trend: Seit Beginn der Satellitenbeobachtung hat die
Ausdehnung des Meereises drastisch abgenommen.
BQuelle: SpectrumDirekt SD790789 vom 1.10.2005, Bild 2
;
UrQuelle: National Snow and Ice Data Center
Simulation:
Eisbedeckung der Arktis
Meereis und LandSchnee
im Frühjahr und im Herbst:
Heute
und in 2100 AD
Arktis im September eisfrei
Schnee und Eis nur noch im Winter
UrQuelle: MPI-Meteorologie Hamburg 2005, M.Böttinger, Presseerklärung 29.9.2005DKRZ (Deutsches Klimarechenzentrum), Hamburg;erscheint im
IPCC-Bericht AR4; BQuelle: http://www.pro-physik.de/Phy/External/PhyH/1,,2-10-0-0-1-display_in_frame-0-0-,00.html?recordId=6973&table=NEWS
2.316 Extreme
Extreme Klimaereignisse
werden immer ausgeprägter
Exzerpt aus Vorträgen von Prof. Schönwiese, Uni Frankfurt
Goto Exkurs:
V2.316_KlimaExtreme_Exzerpt-Schoenwiese.ppt
Bemerkung zur Angabe von Todesopfer:
(1)
Evidente Todesopfer : Individuum bekannt,
Todes-ursache und Kausalität gesichert.
(z.B.: Tote durch Ertrinken bei Hochwasser)
(2) Statistische Todesopfer: Klare statistische Korrelation
zwischen Anzahl der Todesfälle
und äußerem Ereignis.
(z.B. erhöhte Sterblichkeit bei Hitzewelle )
(3) Hochgerechnete
Todesopfer: Extrapolierte Todeszahlen aufgrund von
Dosis-Wirkungsbeziehung aus einem
anderen Dosis-Bereich.
Kein statistischer Nachweis mehr möglich.
(z.B.: Tote in der AllgemeinBevölkerung durch kleine Strahlendosen)
North Atlantic hurricanes have increased with SSTs
N. Atlantic
hurricane
record best
after 1944 with
Marked
increase
aircraft
after
1994
surveillance.
(1944-2005)
SST
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
Global number
and
percentage of
intense
hurricanes
is increasing
auch die eher alltäglichen Extremwerte haben sich geändert:
Warm nights are increasing; cold nights decreasing
1979-2003
1951-1978
1901-1950
fewer
more
fewer
more
Frequency of occurrence of cold or warm temperatures for 202
global stations for 3 time periods:
1901 to 1950 (black), 1951 to 1978 (blue) and 1979 to 2003 (red).
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
Direct Observations of Recent Climate Change
Some aspects of climate have not been
observed to change:
• Tornadoes
• Dust-storms
• Hail
• Lightning
• Antarctic sea ice
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
2.317 Übersicht
Hydrological and Storm-Related Indicators
IPCC2001_TAR1_Fig2.39b
Probability : *** > 99% ;
** = in [90%, 99%] ; * = in [66%, 90%]; ? in [33%,66%]
IPCC2001_TAR1_Fig2.39a
Also das Wichtigste:
•The Earth has warmed 0.6± 0.2 [K] since 1860 with the
last two decades being the warmest of the last century;
•The increase in surface temperatures over the 20th Century
for the Northern hemisphere is likely to be greater than
that for any other century in the last 1000 years;
•Precipitation patterns have changed with an increase in
heavy precipitation events in some regions;
•Sea level has risen 10-20 cm since 1900;
most non-polar glaciers are retreating; and
the extent and thickness of Arctic sea ice is decreasing in summer;
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary
2.32
The Identification of a human Influence
on Climate Change
Feststellung des IPCC:
IPCC 2001: TAR_wg1:
E. The Identification of a human Influence on CC
E.8 Synopsis
„
In the light of new evidence
and taking into account the remaining uncertainties,
most of the observed
warming over the last 50 years
is likely to have been due to the
increase greenhouse gas concentrations.
“
Quelle: IPCC_2001_TAR_TS: p. 61
Bestätigung durch Modellrechnung:
We look at
Global mean surface temperature anomalies
relative to the 1880 to 1920 mean
from the instrumental record
compared with
ensembles of 4 simulations
with a coupled ocean-atmosphere climate model.
The thick line shows the instrumental data
while the thin lines show the individual model simulations in the ensemble of
four members.
Note that the data are annual mean values. The model data are only
sampled at the locations where there are observations
(a) model forced with solar and volcanic forcing only
1. Can natural factors alone explain the recent
temperature record?
Quelle: IPCC_2001_TAR_TS:fig 15a-c, p.58;
“Simulations of the response to natural
forcings alone … do not explain the warming in
the second half of the century”
SPM
{solar and volcanic forcing only}
Quelle: IPCC_2001_TAR_TS:fig 15a, p.58;
wg1_2_Mitchell - Vortrag bei COP6 Bonn 2001, Folie 12
Stott et al,
Science 2000
b) model forced with anthropogenic forcing
including:
• well mixed greenhouse gases,
• changes in stratospheric and tropospheric ozone and the
• direct and indirect effects of sulphate aerosols,
2. Can anthropogenic factors alone explain the
temperature recent record?
{well mixed GHG + O3 + aerosols}
Quelle: IPCC_2001_TAR_TS:fig 15b, p.58
c) model forced with all forcings,
both natural and anthropogenic.
Both natural and anthropogenic forcings
{solar and volcanic} and
{well mixed GHG + O3 + aerosols}
Quelle: IPCC_2001_TAR_TS:fig 15c, p.58
Remarks and details to Figure 15:
•The changes in sulphate aerosol are calculated interactively, and
changes in tropospheric ozone were calculated offline using a chemical transport
model.
• Changes in cloud brightness (the first indirect effect of sulphate aerosols) were
calculated by an off line simulation and included in the model.
The changes in stratospheric ozone were based on observations.
The volcanic and solar forcing were based on published combinations of
measured and proxy data.
The net anthropogenic forcing at 1990 was 1.0 Wm-2
including a net cooling of 1.0 W/m2 due to sulphate aerosols.
The net natural forcing for 1990 relative to 1860 was 0.5 Wm-2,
and for 1992 was a net cooling of 2.0 Wm-2 due to Mount Pinatubo.
Other models forced with anthropogenic forcing give similar results to those shown
in (b).
Quelle: IPCC_2001_TAR_TS:fig 15a-c, p.58
also:
Most of the observed warming of the last 50 years is
attributable to human activities
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 8
Attribution
• are observed
changes consistent
with
 expected responses
to forcings
 inconsistent with
alternative
explanations
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
Observations
All forcing
Solar+volcanic
Understanding and Attributing Climate Change
Continental
warming
likely shows a
significant
anthropogenic
contribution
over the past
50 years
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
Fazit:
1. Der Temperaturanstieg der letzten 50 Jahre kann
global und regional
auf den anthropogenen Einfluss zurückgeführt werden.
(heute viel deutlicher als noch beim TAR (2001))
2. Menschlicher Einfluss wird heute (AR4) auch erkennbar
in anderen Klimabereichen, u.a.:
Erwärmung des Ozans
Temperatur - Extrema
Windsystemen
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206
2.33
2.33 Treibhausgase in der Atmosphäre
.331 CO2 und andere GHG seit der industriellen Revolution
.332 Atmospheric CO2 on different time-scales
.333 Strahlungsantrieb und Global Warming Potential (GWP)
GHG= Grennhouse Gas
2.331
CO2 in der Atmosphäre seit
der industriellen Revolution
Human activities are increasing
the atmospheric concentrations of:
• greenhouse gases that warm the atmosphere
and, in some regions, of
• sulfate aerosols that cool the atmosphere;
Most of the observed warming of the last 50 years is
attributable to human activities
Berichtsstand:Ende 2000
update vom 2001_0813
http://cdiac.esd.ORNL.gov/trends/co2/graphics/Sio-mlgr.gif
aktuelle Adresse: next side
http://cdiac.ornl.gov/trends/co2/graphics/mlo145e_thrudc04.pdf
Berichtsstand:Mitte 2005
update vom 2006_0130
http://cdiac.ornl.gov/trends/co2/sio-mlo.htm
Originaldaten aus Mauna Loa – jedermann kann mit ihnen rechnen
*******************************************************************
*** Atmospheric CO2 concentrations (ppmv) derived from in situ
***
***
air samples collected at Mauna Loa Observatory, Hawaii
***
***
***
***
Source: C.D. Keeling
***
***
T.P. Whorf, and the Carbon Dioxide Research Group
***
***
Scripps Institution of Oceanography (SIO)
***
***
University of California
***
***
La Jolla, California USA 92093-0444
***
***
***
***
May 2005
***
***
***
*******************************************************************
Monthly values are expressed in parts per million (ppm) and reported in the 2003A SIO manometric mole
fraction scale. The monthly values have been adjusted to the 15th of each month. Missing values
are denoted by -99.99. The "annual" average is the arithmetic mean of the twelve monthly values.
In years with one or two missing monthly values, annual values were calculated by substituting a fit value
(4-harmonics with gain factor and spline) for that month and then averaging the twelve monthly values.
Quelle: http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
Originaldaten aus Mauna Loa
Year Jan.
Feb. March April May
Quelle: http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
June July
Aug. Sept.
Oct.
Nov. Dec. Annual Annual-Fit
1958 -99.99 -99.99 315.71 317.45 317.50 -99.99 315.86 314.93 313.19 -99.99 313.34 314.67 -99.99 -99.99
1959 315.58 316.47 316.65 317.71 318.29 318.16 316.55 314.80 313.84 313.34 314.81 315.59 315.98 316.00
1960 316.43 316.97 317.58 319.03 320.03 319.59 318.18 315.91 314.16 313.83 315.00 316.19
1961 316.89 317.70 318.54 319.48 320.58 319.78 318.58 316.79 314.99 315.31 316.10 317.01
1962 317.94 318.56 319.69 320.58 321.01 320.61 319.61 317.40 316.26 315.42 316.69 317.69
1963 318.74 319.08 319.86 321.39 322.24 321.47 319.74 317.77 316.21 315.99 317.07 318.36
1964 319.57 -99.99 -99.99 -99.99 322.23 321.89 320.44 318.70 316.70 316.87 317.68 318.71
1965 319.44 320.44 320.89 322.13 322.16 321.87 321.21 318.87 317.81 317.30 318.87 319.42
316.91 316.91
317.65 317.63
318.45 318.46
318.99 319.02
-99.99 319.52
320.03 320.09
1980 338.01 338.36 340.08 340.77 341.46 341.17 339.56 337.60 335.88 336.01 337.10 338.21
1981 339.23 340.47 341.38 342.51 342.91 342.25 340.49 338.43 336.69 336.85 338.36 339.61
1982 340.75 341.61 342.70 343.56 344.13 343.35 342.06 339.82 337.97 337.86 339.26 340.49
1983 341.37 342.52 343.10 344.94 345.75 345.32 343.99 342.39 339.86 339.99 341.16 342.99
1984 343.70 344.51 345.28 347.08 347.43 346.79 345.40 343.28 341.07 341.35 342.98 344.22
1985 344.97 346.00 347.43 348.35 348.93 348.25 346.56 344.69 343.09 342.80 344.24 345.56
338.69 338.67
339.93 339.95
341.13 341.09
342.78 342.75
344.42 344.44
345.90 345.86
2000 369.14 369.46 370.52 371.66 371.82 371.70 370.12 368.12 366.62 366.73 368.29 369.53
2001 370.28 371.50 372.12 372.87 374.02 373.30 371.62 369.55 367.96 368.09 369.68 371.24
2002 372.43 373.09 373.52 374.86 375.55 375.40 374.02 371.49 370.71 370.24 372.08 373.78
2003 374.68 375.63 376.11 377.65 378.35 378.13 376.62 374.50 372.99 373.00 374.35 375.70
2004 376.79 377.37 378.41 380.52 380.63 379.57 377.79 375.86 374.06 374.24 375.86 377.48
369.48
371.02
373.10
375.64
377.38
369.47
371.04
373.08
375.61
377.43
2007.0606:
aktualisierte Quelle:
aber leider immer noch die alten Daten.
Wer findet aktuellere Daten?
Siehe nächste Seite! Danke Herr Becker.
http://cdiac.ornl.gov/trends/trends.htm
Aktualisierte (2007-06) Links:
hp of Mauna loa Observatory:
http://www.mlo.noaa.gov/home.html
Aktuelle CO2 Daten:
http://www.esrl.noaa.gov/gmd/ccgg/trends/
Alan Robock
Department of Environmental Sciences
Alan Robock
Department of Environmental Sciences
BQuelle: A.Robock: ,Lecture: „Volcanic Eruptions and Climate“, 2005, Folio97
Principal investigator: Thomas Conway, NOAA CMDL
Alan Robock
Department of Environmental Sciences
http://www.cmdl.noaa.gov/ccgg
Possible causes of interannual CO2 variations
- Changes in emissions
- Land use changes
- Unusual atmospheric temperatures or precipitation
(e.g., drought)
- El Niño and La Niña episodes
- Volcanic eruptions through effects on diffuse
radiation
Alan Robock
Department of Environmental Sciences Quelle: A.Robock:“ Volcanic Eruptions and Climate“, 2005, Folio98
2.331a
Wo bleibt das in die
Atmosphäre emittierte fossile CO2 ?
• Es gibt:
große C-Speicher und
große natürliche jährliche Flüsse (150 Gt /a C)
• Die
zusätzliche Emission des fossilen CO2 (ca. 7 Gt C/a )
ist
nur ein kleiner Teil des gesamten KohlenstoffKreislaufes.
Globaler Kohlenstoffkreislauf in Gt C bzw. Gt C/Jahr
Vulkanismus
< 0,05
100
Stratosphäre
2-15 J
650
Troposphäre
1-10 J
Atmosphäre
2??
Waldrodung
1,5?
60
<1?
90
0,5?
600 Landvegetation
1600 tote Biomasse
2-3
0,5-50 J
200-400 J
Biosphäre
1000
Mischungsschicht 1-10 J
38 000
„tiefer“ Ozean
20 000 000
Sedimente
davon: 3500 Kohle
106-109 J
Verwitterung
0,4
300 Erdöl
200 Erdgas
IPCC 2001 u.v.a., hier nach Schönwiese, 2003;
BQuelle: C.D.Schönwiese: 2006-01, Frankfurt/M; Folie 28
> 1000 J
Ozean
Bodenemission
Pedosphäre/
Lithosphäre
fossile Brennstoffe
6 *
*
2004: 7,5 Gt C entspr. 27,5 Gt CO2
Bilanz nach
200 Jahren CO2 Emission
durch den Menschen :
Carbon emissions and uptakes since 1800
(Gt C)
140
Land use
change
115
Oceans
110
265
Fossil
emissions
Terrestrial
180
Atmosphere
Quelle: IPCC-COP6a_Bonn2001_wg1_3_Watson
Wo bleibt das CO2
letzendlich :
Atmosphäre
Ozean
Atmosphärisches CO2 nach verschiedenen Emissionswegen
GesamtEmission:
2050_
Quelle: IPCC 2005: SRCCS: Fig.6.2, p.280. (SRCSS= SpecialReport on CO2 Capture and Storage)
18 Tt CO2 !!
Figure 6.2.
Simulated atmospheric CO2
resulting from CO2
release to the atmosphere or
injection into the ocean at 3,000 m depth
(Kheshgi and Archer, 2004).
Emissions follow a logistic trajectory with cumulative emissions of 18,000 GtCO2. (sehr viel !!)
Illustrative cases include
100% of emissions released to the atmosphere leading to a peak in concentration,
100% of emissions injected into the ocean, and
0% no emissions (i.e., other mitigation approaches are used).
Additional cases include
atmospheric emission to year 2050,
followed by either (after 2050)
50% to atmosphere and 50% to ocean after 2050, or
,
50% to atmosphere and 50% by other mitigation approaches after 2050.
Fazit:
Ocean injection results in lower peak concentrations than atmospheric release but higher than if
other mitigation approaches are used (e.g., renewables or permanent storage).
Quelle: IPCC 2005: SRCCS: Fig.6.2, p.280. (Bildunterschrift)
2.332
Atmospheric CO2 on different time-scales
(b) CO2 concentration in
Antarctic ice cores
Recent
atmospheric masurements
(Mauna Loa)
are shown forcomparison..
for the past millenium.
(a) Direct measurements
of atmospheric CO2.
..Variations in atmospheric CO2 concentration on different time-scales..
(e) Geochemically inferred
CO2 concentrations.
(d) CO2 concentration in the
Vostok Antarctic ice core.
(c) CO2 concentration in the
Taylor Dome
Antarctic ice core.
Different colours represent results from different studies.
Quelle: IPCC_2001_TAR_TSFig.10a-d, p.40
The last 0.5 [Ga] : Geochemically inferred atmospheric CO2
(Coloured bars represent different published studies)
Quelle: IPCC_2001_TAR_TSFig.10 f, p.40
2.343
GHG, Radiative Forcing and GWP
• Treibhausgase
(GHG) als Indikatoren von menschliche Aktivitäten
• Beschreibung ihrer direkten Wirkung :
Strahlungsantrieb (Radiative Forcing)
• „Normierung“ ihrer Wirkung über die Zeit durch Vergleich mit CO2
Global Warmimg Potential (GWP)
Concentration of Carbon Dioxide and Methane Have
Risen Greatly Since Pre-Industrial Times
Carbon dioxide: 33% rise
Methane: 100% rise
ppb
BW 5
The MetOffice. Hadley Center for Climate Prediction and Research.
flask = Flasche
Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton
Indicators of the Human Influence
on the Atmosphere during the Industrial Era
Quelle: IPCC-COP6a_Bonn2001_wg1_3_Watson
Der Strahlungsantrieb : „radiative forcing“
A process that alters the energy balance of the Earth - atmosphere system is known
as a radiative forcing mechanism (1. IPCC-Report (1990), p. 41-68).
Radiative forcing [ W/m2 ] is
the change in the balance
between
radiation coming into the atmosphere
and
radiation going out.
A positive radiative forcing tends on average to warm the surface of the Earth, and
negative
forcing tends on average to cool the surface.
Radiative forcing :
Radiative forcing is the change in the net , downward minus upward,
irradiance (in W m–2) at the tropopause
,
due to a change in an external driver of climate change, such as,
for example, a change in the concentration of CO2 or the output of the Sun.
Radiative forcing is computed with all tropospheric properties held fixed
at their unperturbed values,
and after allowing for stratospheric temperatures, if perturbed, to readjust to
radiative-dynamical equilibrium.
Radiative forcing is called instantaneous if no change in stratospheric temperature
is accounted for.
For the purposes of this report, radiative forcing is further defined as the change
relative to the year 1750
and, unless otherwise noted, refers to a global and annual average value.
Radiative forcing is not to be confused with cloud radiative forcing, a similar terminology for describing an
unrelated measure of the impact of clouds on the irradiance at the top of the atmosphere.
Quelle: AR4-wg1, Final Report- Glossary, p.951
Energy balance The difference between the total incoming and total outgoing energy.
If this balance is positive, warming occurs;
if it is negative, cooling occurs.
Averaged over the globe and over long time periods, this balance must be zero.
Because the climate system derives virtually all its energy from the Sun, zero balance
implies that, globally, the amount of incoming solar radiation on
average must be equal to the sum of the outgoing reflected solar radiation and the
outgoing thermal infrared radiation emitted by the climate system.
A perturbation of this global radiation balance, be it anthropogenic or natural, is called
radiative forcing.
External forcing External forcing refers to a forcing agent
outside the climate system
causing a change in the climate system.
External forcings are:
Volcanic eruptions,
solar variations and
anthropogenic changes in the
composition of the atmosphere and
land use change
Quelle: AR4-wg1, Final Report- Glossary,
out: 107
in: 342
out: 235
Balance:
radiation coming in :
solar input
= 342 [W/m^2
radiation going out. : 107 (reflected solar) + 235(i.r.) = 342 [W/m^2]
IPCC2001_TAR1_Fig1.2
Stand TAR, (2001):
SPM 3
Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton
Aktueller Stand AR4, (2007):
Zeitliche Entwicklung 1880-2000
der GHG‘s und sonstiger Strahlungsantriebe
Wer ist schuld am Treibhauseffekt ?
Die Klimaantriebe in ihrer zeitlichen Entwicklung
all GHG__
__solar
_Aerosol
Aerosol in Stratosphere)__
BQuelle: VGB-Beising (2006): Klimawandel und Energiewirtschaft-Literaturrecherche, p.115, Abb. 8.15 A
Modellrechnungen mit
Klimaantrieben (forcings) und resultierenden Temperaturänderung
für den Zeitraum 1880 - 2003
Modellrechnungen des Goddard-Instituts für den Zeitraum 1880 - 2003 (Hansen 2005a) mit den
(A) in den Klimasimulationen verwendeten Klimaantrieben (forcings) und die
(B) mit dem GISS Modell simulierte und beobachtete Temperaturänderung
BQuelle: VGB-Beising (2006): Klimawandel und Energiewirtschaft-Literaturrecherche, p.115, Abb. 8.15
Global Warming Potential (GWP)
The GWP is typically used to contrast different greenhouse
gases relative to CO2.
The GWP provides a simple
ai * ci(t) dt
measure of the relative radiiative effects of the emissions
of various greenhouse gases.
aCO2 * cCO2(t) dt
GWP is calculated using
the formula:
where:
ai = the instantaneous radiative forcing due to a unit increase
in the concentration of trace gas i.
ci = concentration of the trace gas i, remaining at time t after
after its release.
n = the number of years over which the calculation is performed.
Quelle:ORNL_OakRidge2002_Current_GHG..htm
Current GHG Concentrations
Updated September 2001
Pre-industrial
Present
concentration
tropospheric
(1860)
concentration1
Quelle:
OakRidge
NatLab
http://cdiac.esd.
ornl.gov/pns/
current_ghg.html
mit Links zu
Datenmaterial
carbon dioxide (CO2)
(ppm)
2884
369.45
methane (CH4) (ppb)
8486
18397/ 17268
Quelle:ORNL_OakRidge2002_Current_GHG..htm
Atmospheric
lifetime
(years)3
1
120
12
3157/ 3148
23
296
zero
2637/ 2608
3,800
50
zero
5447/ 5378
8,100
102
zero
827/ 828
4,800
85
zero
987/ 968
1,400
42
zero
567/ 548
36010
5
zero
152.5/13411
1,500
12
zero
4.012
zero
0.12 13
zero
1115
12,000
260
zero
416
11,900
10,000
2517
2418/ 2919
nitrous oxide (N2O) (ppb) 2859
CFC-11
(trichlorofluoromethane)
(CCl3F) (ppt)
CFC-12
(dichlorodifluoromethane)
(CF2Cl2) (ppt)
CFC-113
(trichlorotrifluoroethane)
(C2F3Cl3) (ppt)
carbon tetrachloride
(CCl4) (ppt)
methyl chloroform
(CH3CCl3) (ppt)
HCFC-22
(chlorodifluoromethane)
(CHClF2) (ppt)
sulphur hexafluoride (SF6)
(ppt)
trifluoromethyl sulphur
pentafluoride (SF5CF3)
(ppt)
fluoroform (CHF3, HFC23) (ppt)
perfluoroethane (C2F6)
(ppt)
surface ozone (ppb)
GWP2 (100
yr. time
horizon)
22,200
~18,00014
20
114
3,200
~1,00014
hours
2.34
2.34 Modelle
2.341 Ein einfaches Energiebilanz Modell (EBM)
2.342 Komplexere Modele
Fortsetzung in Datei V2.34_Klimawandel2
GHG= Greenhouse Gas
Weitere Quellen und hervorragende Darstellungen
Globaler und regionaler
Klimawandel
http://web.uni-frankfurt.de/IMGF/meteor/klima/Sw-fh-frankfurt-2006.ppt
Christian-D. Schönwiese
Universität Frankfurt/Main
Institut für Atmosphäre und Umwelt
http://www.geo.uni-frankfurt.de/iau/klima
© ESA/EUMETSAT: METEOSAT 8 SG – multi channel artificial composite colour image, 23-5-2003, 12:15 UTC
Schönwiese_CC_Vortrag_FH-frankfurt-2006.ppt
Volcanic Eruptions
and Climate
Alan Robock
Department of Environmental Sciences
Rutgers University, New Brunswick, New Jersey USA
[email protected]
http://envsci.rutgers.edu/~robock
Alan Robock
Department of Environmental Sciences
version 1.3
Quelle: A.Robock:Lecture: Volcanic Eruptions and Climate, 2005, Folie1