Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
QuickTime™ and a TIFF (Uncompress ed) dec ompres sor are needed to s ee this pic ture. Results from the Carbon Cycle Data Assimilation System (CCDAS) Marko Scholze1, Peter Rayner2, Wolfgang Knorr1 Heinrich Widmann3, Thomas Kaminski4 & Ralf Giering4 1 2 3 4 FastOpt Methodology sketch CCDAS – Carbon Cycle Data Assimilation System Misfit 1 Misfit to observations Forward Modeling: Parameters –> Misfit CO2 station concentration Atmospheric Transport Model: TM2 Fluxes Biosphere Model: BETHY Model parameter Inverse Modeling: Parameter optimization CCDAS set-up Background fluxes: 1. Fossil emissions (Marland et al., 2001 und Andres et al., 1996) 2. Ocean CO2 (Takahashi et al., 1999 und Le Quéré et al., 2000) 3. Land-use (Houghton et al., 1990) Transport Model TM2 (Heimann, 1995) BETHY (Biosphere Energy-Transfer-Hydrology Scheme) lat, lon = 2 deg • • • • GPP: C3 photosynthesis – Farquhar et al. (1980) C4 photosynthesis – Collatz et al. (1992) stomata – Knorr (1997) Plant respiration: maintenance resp. = f(Nleaf, T) – Farquhar, Ryan (1991) growth resp. ~ NPP – Ryan (1991) Soil respiration: fast/slow pool resp., temperature (Q10 formulation) and moisture dependant Carbon balance: average NPP = average soil resp. (at each grid point) t=1h t=1h t=1day soil <1: source >1: sink Methodology Minimize cost function such as (Bayesian form): T 1 1 -1 J (p ) p p 0 C p 0 p p 0 M (p ) D 2 2 T C-1D M (p ) D where - M is a model mapping parameters p to observable quantities - D is a set of observations - C error covariance matrix need of p J (adjoint of the model) Calculation of uncertainties • Error covariance of parameters J C p 2 p i, j 2 1 = inverse Hessian • Covariance (uncertainties) of prognostic quantities T X ( p ) X ( p ) C X C p p p Improvements and further applications since Rayner et al. 2005 • • • • • • Improved carbon balance Improved spin-up of fast soil pool Weaker prior constraint on parameters Fate of terrestrial C under climate change Including biomass burning Uncertainties of prognostic (2000-2004) net fluxes (still calculating) Seasonal cycle of CO2 at Barrow, Alaska The red line is the simulation of R05 while the green line Is the improved simulation. Observations are shown by diamonds. Global atmospheric growth rate Weighted sum of Mauna Loa (0.75) and South Pole (0.25) concentrations Parameters I • • • 3 PFT specific parameters (Jmax, Jmax/Vmax and ) 18 global parameters 56 parameters in all plus 1 initial value (offset) Parameters II Relative Error Reduction Some values of global fluxes Value Gt C/yr 1980-2000 (prior) 1980-1999 R05 New GPP NPP Fast Resp. Slow Resp. 135.7 68.18 53.83 14.46 134.8 40.55 27.4 10.69 144.7 64.92 25.7 36.9 NEP -0.11 2.45 2.32 Carbon Balance Uncertainty in net carbon flux 1980-2000 gC / (m2 year) net carbon flux 1980-2000 gC / (m2 year) Terrestrial C cycling under climate change Off-line model for prognostic slow pool Some equations: P fs R rF P t 1. f s Ta /10 R Q10,s NEP NPP rF P R P: slow pool, rF: fast resp., fS: allocation fast to slow pool : soil moisture Ta: air temperature Finding : • Assume P(t = 1979) • Adjust to yield NEP(t = 1979-200) iterative process Initial slow pool size Decadal mean global NEP 1980-2090 Red lines indicate simulations with climate change and black lines with no climate change. Solid lines indicate simulations with optimized parameters and broken lines with a priori parameters. Including biomass burning • A biomass burning climatology (monthly resolved) based on the v. d. Werf data is used as a yearly basis function for the optimisation • Land is divided into the 11 TransCom-3 regions • That means: 11 regions * 21 yr = 231 additional parameters van der Werf et al., 2004, Continental-Scale Partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña Period. Science, 303, 73-76. Parameters revisited Parameter Prior No fire Inc. fire fR,leaf ccost fS Q10,f Q10,s f 0.4 1.25 0.2 1.0 1.5 1.5 1.5 0.22 1.09 0.32 0.63 2.06 1.31 8.7 0.3 1.23 0.78 0.34 2.08 1.46 7.35 Global fluxes revisited Mean value 1980-1999 Gt C/yr Prior No fire Inc. fire GPP NPP Fast Resp. Slow Resp. Fire 135.7 68.18 53.83 14.46 144.7 64.92 25.7 36.9 143.9 57.89 13.26 39.28 2.96 NEP -0.11 2.32 2.39 Global growth rate revisited Atmospheric CO2 growth rate observed no fire with fire Calculated as: C GLO B 0.25C SPO 0.75C MLO Interannual variability in biomass burning estimate 4.50 4.00 3.00 2.50 2.00 1.50 1.00 0.50 0.00 19 80 19 81 19 82 19 83 19 84 19 85 19 86 19 87 19 88 19 89 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 Gt C/yr 3.50 year blue bars red bars CCDAS v. d. Werf et al. Conclusions & Outlook • • • • • Prognostic future net carbon flux under climate change: more productive & more sensitive More processes: fire (‘weak constraint’ as a first step) More components: ocean (not-shown, but “free” optimization indicates no big changes, ideally also process-based) Prognostic uncertainties on net carbon flux for 20002004: calculations finished by now.. More data: inventories, regional inversions and budgets, satellite CO2 columns, isotopes, O2/N2