Download Cct component

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Simple dc circuit
Pg 31-60
HUGHES
Electrical & Electronic
Technology
I
V
Load
A complete connection of a source and a load
Source : voltage source, current source such as battery
Load : resistor, capacitor, inductor
Circuit 3
I
Circuit 1
Circuit 2
V
A network is a combination of several circuits
R1
V1
I
R2
V2
V
V  V1  V2
IRt  IR1  IR2
therefore
Rt  R1  R2
V  IRt
V1  IR1
V2  IR2
V1
R2
R3
V  IRt
V1  IR1
V3
V
R1
V2
I
V2  IR2
V3  IR3
V  V1  V2  V3
IRt  IR1  IR2  IR3
therefore
Rt  R1  R2  R3
In general for n series of resistor, Rt
Rt  R1  R2  R3  .........  Rn
One man decides to connect two lamps of 60W@220V in
series in order to get more light . However he found the lamps
give out very litter light. Why? Can you explain this.
To get full light , we must connect a single lamp to 220V
source , thus we have
2
V
P  VI 
R
P 60
I 
 0.27 A
V 220
V 2 2202
R

 807 
P
60
When connect two lamps in series , then
Rt  R1  R2  807  807  1614 
V
220
I

 0.136 A
Rt 1614
Since the current is less then the
lamp cannot give light fully.
I=1.5A
Calculate the voltage across
each of resistors as in figure
and hence calculate the
supply voltage V
V
R1=2
V1
R2=3
V2
R3=8
V3
V1  IR1  1.5  2  3.0 V
V2  IR2  1.5  3  4.5 V
V3  IR3  1.5  8  12.0 V
V  V1  V2  V3  3.0  4.5  12.0  19.5 V
I
Calculate the circuit’s current
R1 =40 V
1
V=100V
R2 =50  V2
R3=70 V
3
R  R1  R2  R3  40  50  70  160 
V 100
I 
 0.625 A
R 160
V1
R1
R  R1  R2
V2
I
V
I
R1  R2
V
R2
V
V1  IR1 
R1
R1  R2
V1
R1

V R1  R2
V
V2  IR2 
R2
R1  R2
V2
R2

V R1  R2
V2
R2

V R1  R2
10
100

30 R1  100
R1  100  3100  300
R1  200 
R1
V1
Given that R2=100, calculate
R1 in order to obtain an output
voltage 10V across R2
R2
10V
I
V=30V
I
V  I1R1  I 2 R2
I1
R1
V
I2
I1 
R2
V
R1
V
I2 
R2
I  I1  I 2
I
1
1
 
V R1 R2
V V
I 
R1 R2
but
I 1

V R
then
1 1
1
 
R R1 R2
I
I
V
1
R
1
I3
I2
R
2
R
3
V V V
I 

R1 R2 R3
then
In general
I
1
1
1
 

V R1 R2 R3
1 1
1
1
 

R R1 R2 R3
1 1
1
1
1
 

 .......
R R1 R2 R3
Rn
I
I1
V
R1
I2
1 1
1
 
R R1 R2
R2
R
R1 R2
R1  R2
R1 R2
V  IR  I
R1  R2
But
Therefore
V  I1R1  I 2 R2
R2
I1  I
and
R1  R2
R1
I2  I
R1  R2
I
Calculate I1,I2 and I3
V 110
I1 

 5.0 A
R1 22
I1
R1
V=110V 22
V 110
I2 

 2.5 A
R2 44
I  I1  I 2  5.0  2.5  7.5 A
I2
R2
44
I
I1
Calculate the effective resistance
and the power supply
V=12V
R1
6.8
I2
R2
4.7
I3
R3
2.2
1 1
1
1
1
1
1
 




R R1 R2 R3 6.8 4.7 2.2
 0.147  0.213  0.455  0.815
1
R
 1.23 
0.815
Hence
V
12
I 
 9.76 A
R 1.23
I=8A
Calculate the current in the 2 
resistor, given that
I1
(a)R1 =2 
(b)R1 =4 
V
R1
I2
R2
2
R1
2
I2  I
 8
 4.0 A
R1  R2
22
I1 = I - I2 = 8 - 4 = 4A
I2  I
I1 and I2 are equal
R1
4
 8
 5.3 A
R1  R2
42
I1 and I2 are not equal
I1  I  I 2  8  5.3  2.7 A
Current Law- At any instant the
algebraic sum of the currents at a
junction in a network is zero
N
I
i
0
i
I1  I 2  I 3  I 4  0
I1
I4
I2
I3
At junction a
I1
R2
a
I4
I3
Determine the relationship
between the currents I1 ,I2, I4
and I5.
R1
R3
I2
I1  I 4  I 3  0
b
I5
I 3  I1  I 4
At junction b I 3  I 5  I 2  0
Hence
Therefore
Then
I3  I 2  I5
I1  I 4  I 2  I 5
or
I1  I 2  I 4  I 5  0
Given that I1=2.5A and I2=-1.5A.
Calculate the current I3.
R2
I1
I3
R3
R1
From Kirchoff’s law
R5
I1  I 2  I 3  0
I2
I 3   I1  I 2  2.5  1.5  1.0 A
R4
a
I1=3A
At junction a
I4
I 2  I1  I 3  3  1  2 A
I6=1A
I2  I4  I6  0
I 4  I 6  I 2  1  2  1A
c
I5
I1  I 2  I 3  0
At junction b
I2
I3
Determine the current
I2, I4 and I5.
b
At junction c
I3  I 4  I5  0
I5  I3  I 4  1  1  2 A
Determine the current I1
and I2.
I1
R1=30
Use current divider concept
R2
I3 
I1
R2  R3
R2  R3
60  30
I1 
I3 
1  1.5 A
R2
60
At junction a
I 2  I 3  I1  0
I 2  I1  I 3  1.5  1  0.5 A
a
R2
60
R3=30
I2
I3=1A
Total potential difference across
connected components in a
complete circuit is zero. The
sign of potential difference (p.d)
of the source (or e.m.f) is
always in opposite sign of the
passive components of the
circuit
E  V1  V2  V3
or
thus
V1  V2  V3  E  0
n
V
i
i
0
V1
E
V2
V3
E1
E2
V
E3
V  E1  E2  E3
Loop C
Determine the Voltage
V1 and V3.
V1
E=12V
Loop A
V2=8V
Loop A
V3
Loop B
E  V1  V2
V1  E  V2  12  8  4V
Loop B
0  V2  V3  V4
V3  V2  V4  8  2  6V
To check the result
Loop C
E  V1  V3  V4
12  4  6  2  12
V4=2V
D
Calculate VAB for the
network shown
R2
R1

Branch A
VAC
R3
15

V
 20  7.5V
R1  R3
25  15
20V
25
VAB
A


R3
R4
Branch B
VBC
R4
10

V
 20  4.0V
R2  R4
40  10
Applying Kirchoff’s law
0  VAB  VBC  VCA  VAB  VBC  VAC
VAB  VAC  VBC  7.5  4.0  3.5V
B
C
Calculate V1 and the e.m.f E2
Kirchoff’s law to left loop
E1  V1  V2
E1=10V
Kirchoff’s law to right loop
 E2  V2  V3
E2  V2  V3  6  8  14V
To check again for outside loop
10 14  4  8
V3=8V
V2=6V
V1  E1  V2  10  6  4V
E1  E2  V1  V3
V1
E2
Related documents