Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
( 11.Trigonometry ) Trigonometry is derived from Greek words tri ( three) gonon (angles) and metron ( measure). Trigonometry means the measure of three angles in a right triangle . Trigonometry specifically deals with the relationships between the sides and the angles of triangles, that is, on the trigonometric functions, and with calculations based on these functions. 1 Relations between sides and angles of a right triangle An angle which contains 900 then that angle is said to be right angle . Opposite side If an angle of a triangle contains 900 , then that triangle said to be right angle triangle. Adjecent Side 90 0 The side which is opposite to right angle is called hypotenuse .It denote by AB or c . The side opposite to an angle is called opposite side to and it is denoted by BC or a . The side adjacent to an angle is called adjacent side to and it is denoted by AC or b . 2 Ratioes of a right triangle. BC a Sin A Opposite side to A / hypotenuse AB c Adjacent side Opposite side The ratio of opposite side and hypotenuse is called Sine A . Shortly it is written as Sin A and read as Sine A. 900 The ratio of adjacent side and hypotenuse is called Cosine A . Shortly it is written as Cos A and read as Cos A AC b Cos A adjacent side to A / hypotenuse AB c 3 The ratio of Opposite side and adjacent side is called Tangent A . Shortly it is written as Tan A and read as Tan A Opposite side BC a Tan A AC b = Opposite side to A / adjacent side to A Adjacent side 90 0 The ratio of adjacent side and Opposite side is called Cotangent A . Shortly it is written as Cot A and read as Cot A AC b Cot A adjacent side to A / Opposite side to A BC a 4 AB C Sec A = hypotenuse / adjacent side to A AC b Opposite Side The ratio of hypotenuse and adjacent side is called Secant A . Shortly it is written as Sec A and read as Sec A Adjacent Side 90 0 The ratio of hypotenuse and Opposite side is called Secant A . Shortly it is written as Cosec A or csc A and read as Cosec A AB C Cosec A BC a = hypotenuse / Opposite side to A 5 1. Identify hypotenuse”, “Opposite Side” and “adjacent side” for angle R in the given triangle. for angle R in the adjacent triangle. PR = hypotenuse Opposite Sice Do this P Q R Adjacent Side PQ = Opposite Side Z QR = adjacent Side 2 (i) Identify hypotenuse”, “Opposite Side” and “adjacent side” for angle X in the given triangle. Y hypotenuse for angle X in the adjacent triangle. XY = hypotenuse YZ = Opposite side XZ =adjacent side 6 X Do this 2 (i) Identify hypotenuse”, “Opposite Side” and “adjacent side” for angle Y in the given triangle. for angle Y in the adjacent triangle. Z Y X hypotenuse XY = hypotenuse XZ = Opposite Side YZ = adjecent Side 7 {ç³Äæý$†²…^èþ…y Write lengths of “hypotenuse”, “Opposite Side” ìþ: and “adjacent side” for the given angles in the given triangle. 4 cm 1. For angle C 2. For angle A According Pythagoras Theorem AC 2 AB 2 BC 2 B AB AC BC 5 4 25 16 9 3 2 2 2 2 Adjacent Side C 2 2 AB 3 5 cm A Opposite side 3 cm ( i ) For angle C AC = hypotenuse = 5 cm AB = Opposite Side = 3 cm BC = adjacent Side = 4 cm ( ii ) For angle A 4 cm AC = hypotenuse = 5 cm BC = Opposite Side = 4 cm AB =adjacent side = 3 cm Opposite Side C B 5 cm Adjacent Side 3 cm A 8 C Do This 1. Find (i) Sin C (ii) Cos C and (iii) tan C in the adjacent triangle. In the adjacent Δ ABC , B = 900 A B 12 cm According Pythagoras Theorem AC AB BC 2 2 2 AB AC BC 2 2 2 AB 13 5 169 25 144 12 2 2 2 AB 12 cm AB 12 (i) Sin C AC 13 AB 12 (iii ) Tan C BC 5 2 BC 5 (ii ) Cos C AC 13 9 X Do this In triangle XYZ , Y is right angle. XZ= 17cm and YZ=15 cm then find (i) sin X (ii) Cos Z (iii ) tan X . In triangle XYZ , Y is right angle. According Pythagoras Theorem XZ 2 XY 2 YZ 2 XY XZ YZ 2 2 Y 2 XY 17 15 289 225 64 8 2 2 Z 15 cm 2 2 XY = 8 cm YZ 15 (i ) Sin X = XZ 17 YZ 15 (ii ) Cos Z = XZ 17 YZ 15 (iii ) Tan X= XY 8 10 P Do This In triangle PQR with right angle at Q , the value of P is x , PQ = 7 cm and QR = 24 cm, then find Sin x and Cos x . x In triangle PQR with right angle at Q According Pythagoras Theorem Q PR 2 PQ 2 QR 2 PR 7 24 49 576 625 25 2 2 2 R 24 cm 2 PR = 25 cm QR 24 (i ) Sin x = PR 25 PQ 7 (ii ) Cos x = PR 25 11 In a right angle triangle ABC , right angle is at C . BC+CA= 23 cm and BC – CA = 7 cm, then find Sin A and Tan B . 8 cm A Try This In a right angle triangle ABC , right angle is at C . C BC CA BC CA 23 7 30 2BC 30 15 30 BC 15 2 B 15 cm In ΔABC , C = 900 According Pythagoras Theorem AB 2 AC 2 BC 2 BC CA 23 15 CA 23 CA 23 15 8 AB 8 15 64 225 289 17 2 2 2 AB = 17 cm BC 15 Sin A AB 17 AC 8 Tan B BC 15 12 2 Think - Discuss 4 deos exists for some value of angle x ? 3 Sin value exists always less than 1. 4 Sin x Value is more than 1. So it does not exists for some 3 value of angle x . (i) Sin x (ii) The Value of Sin A and Cos A is always less than 1. Why? Origin is the centre of the circle and radius is 1 unit. P(a,b) is the point on the circle. The point is making an angle with A . AP b Sin b OP 1 Y P ( a, b) 1 Y Coordinate OA a Cos a X Coordinate OP 1 X o (0, 0) aA b X Y 13 P is making an angle 3600 at centre to rotate one complete revolution. In adjacent figure AOB is the one fourth part of revolution and making an angle of 900. AOC is the half part of revolution which makes an angle of 1800 at centre of the C ( 1, 0) circle. AOD is the three fourth part of revolution which makes 2700 at the centre. A,B,C,D points are the ordered pairs which are (1,0),((0,1),(-1,0),(0,-1) respectively . B (0,1) o A(1, 0) D(0, 1) According to the Ordered Pairs Sin 00 = 0 Sin 900 = 1 Sin 1800 = 0 Cos 00 = 1 Cos 900 = 0 Cos 1800 = – 1 Sin 2700 = – 1 Cos 2700 = 0 Sin 3600 = 0 Cos 3600 = 1 Like this Sine and Cosine Values are always exists less than 1. (iii) Tan A is the product of tan and A . Tan A means Value of the Tangent of an angle A . But not the product of tan and A . 14 Multiplicative Inverses of Trigonometrical Ratioes BC a Sin A AB c AB C Cosec A BC a Opposite side of A / hypotenuse = hypotenuse / Opposite side of A Adjacent Side So Sine and Cosec are called multiplicative inverse trigonometrical ratioes of each other . 1 Co sec A Sin A 1 Sin A Co sec A 15 Multiplicative Inverses of Trigonometrical Ratioes AC b Cos A AB c AB C Sec A AC b Adjacent side of A / hypotenuse = hypotenuse / Adjacent side of A Adjacent Side So Cosine (Cos) and Secant (Sec) are called multiplicative inverse trigonometrical ratioes of each other . 1 1 Sec A Cos A Sec A Cos A 16 Multiplicative Inverses of Trigonometrical Ratioes = Opposite side of A / adjacent side of A Opposite Side BC a Tan A AC b AC b Cot A BC a adjacent side of A / Opposite side of A Adjacent Side So Tangent ( Tan ) and Cotangent ( Cot ) are called multiplicative inverse trigonometrical ratioes of each other . 1 Cot A Tan A 1 Tan A Cot A 17 Ratioes of trigonometrical Ratioes. BC Sin A BC AB AC Cos A AC AB Adjacent Side = Opposite side of A / adjacent side of A Tan A Sin A Tan A Cos A 18 Ratioes of trigonometrical Ratioes. AC Cos A AC AB BC Sin A BC AB Adjacent Side adjacent side of A / Opposite side of A Cot A Cos A Cot A Sin A 19 Think – Discuss Sin A equal to Tan A ? Is Cos A BC Sin A BC AB Cos A AC AC AB Adjacent Side = Opposite side of A / adjacent side of A Tan A Sin A Tan A Cos A 20 Think – Discuss Is Cos A equal Sin A to Cot A ? AC Cos A AC AB BC Sin A BC AB Adjacent Side adjacent side of A / Opposite side of A Cot A Cos A Cot A Sin A 21 Example: 1 If Tan A 3 4 then find the other trigonometric ratio of angle A. 3 Tan A = Opposite side of A / adjacent side of A 4 C Opposite side : adjacent side = 3:4 Opposite Side of A = BC = 3k ( where k is any positive number ) adjacent side of A = AB = 4k A 3k Adjacent Side 4k B According to Pythagoras theorem in Δ ABC AC2 = AB2+BC2 AC2 = (3k)2+(4k)2 = 9k2+16k2 = 25k2 = (5k)2 AC = 5k AC 5k 5 BC 3k 3 Cosec A SinA BC 3k 3 AC 5k 5 AB 4k 4 Cos A AC 5k 5 BC 3k 3 Tan A AB 4k 4 AC 5k 5 Sec A AB 4k 4 AB 4k 4 Cot A BC 3k 3 22 Example-2 If A and P are acute angles such that Sin A = Sin P then prove that A = P . BC R C Sin A AC QR Sin P PR A BC QR Let k AC PR BC QR AC PR BC k BC k . AC AC AB PQ If AC 2 BC 2 PR QR 2 Q P B If Sin A = Sin P 2 QR k QR k .PR PR and AC 2 k 2 AC 2 PR k PR 2 AC AB BC PR PQ QR 2 2 then A P AC 2 (1 k 2 ) PR (1 k ) 2 ABC 2 AC 2 AC 2 PR PR PQR 23 Another Method of Example-2 If A and P are acute angles such that Sin A = Sin P then prove that A = P . In ΔACP , Given that P A C Sin A = Sin P þ CP For angle A in ΔACP Sin A AP AC For angle P in ΔACP Sin P AP CP AC Sin A = Sin P AP AP CP AC A P 24 Q 20 units 21 units Example : 3 Consider a triangle PQR , right angled at P in which PQ = 29 units , QR= 21 units and PQR = then find the value of 2 2 2 2 ( ii ) Cos Sin and (i )Cos Sin According to Pythagoras theorem in P Δ PQR PR2 = PQ2 - QR2 R PR 2 292 212 841 441 400 202 PR = 20 units PR 20 Sin PQ 29 QR 21 Cos PQ 29 2 2 21 20 441 400 841 2 2 (i)Cos Sin 2 2 1 29 29 841 841 841 2 2 21 20 441 400 41 2 2 (ii)Cos Sin 2 2 29 29 841 841 841 25 Exercise – 11.1 1. In a right angle triangle ABC, 8 cm , 15 cm and 17 cm are the lengths of AB,BC and CA respectively. Then find out Sin A , Cos A and tan A . Given that , AB = 8 cm ; BC = 15 cm ; CA = 17 Cm in a right angle triangle ABC . A 15cm C B 8 cm CA is the longest side of a right angle triangle ABC . Hence CA is the hypotenuse of a ΔABC. For angle A Sin A = Opposite side to A/ hypotenuse = Cos A = Adjacent side to A/ hypotenuse = BC 15 AC 17 AB 8 AC 17 tan A = Opposite side to A / Adjacent side to A = BC 15 AB 8 26 Exercise – 11.1 2.The sides of a right angle triangle PQR are PQ = 7 cm , QR = 25 R cm and Q = 900 respectively. Then Find tan Q – tan R . 24cm Solution : Given that in ΔPQR , Q = 900 , PQ = 7cm , PR = 25 cm . P 7 cm Q According to Pythagoras theorem in ΔPQR QR2 = PR2 - PQ2 = 252 - 72 =625-49 = 576=242 QR = 24 cm For angle P ; tan P = Opposite side to P / Adjacent side to P = QR 24 PQ 7 For angle R ; tan R = Opposite side to P / Adjacent side to P = PQ 7 QR 24 24 7 242 7 2 576 49 527 tan P tan R 7 24 7.24 168 168 27 Exercise – 11.1 3. In a right angle triangle ABC with right angle at B, in which a = 24 units , b = 25 units and BAC = . Then find cos and tan . a = 24 units C A 7 units B Solution : Given that , in ΔABC B = 900 a = BC= 24 units , b = AC = 25 units and BAC = . According to Pythagoras theorem in ΔABC AB2 = AC2 - BC2 = 252 - 242 =625-576 = 49=72 AB = 7 units Cos = Adjacent side to / hypotenuse = AB 7 AC 25 tan = Opposite side to / Adjacent side to = BC 24 AB 7 28 Exercise – 11.1 C 5k 12 4. If cos A , Find Sin A and tan A . 13 Solution : Let in triangle ΔABC ,B = 900 Cos A = 12/13 A Cos A = 12/13 = Adjacent side to A/ hypotenuse 12k B Adjacent side : hypotenuse = 12:13 Adjacent side to A = AB =12k ( where k is any positive number ) hypotenuse = AC =13k According to Pythagoras theorem in ΔABC BC2 = AC2 - AB2 = (13k)2 – (12k)2 =169k2 -144k2 = 25k2 =(5k)2 BC = 5k Sin A = Opposite side to A / hypotenuse = BC 5k 5 AC 13 k 13 tan A = Opposite side to A / adjacent side to A = BC 5 k 5 AB 12 k 12 29 Exercise – 11.1 5. If 3 tan A = 4 then find Sin A and Cos A . C 4k Solution : Given that , 3 tan A = 4 tan A = 4 / 3 = Opposite side to A / adjacent side to A Opposite side : adjacent side = 4:3 B 3k A Opposite side to A = BC =4k ( where k be any positive number ) Adjacent side to A = AB =3k According to Pythagoras theorem in ΔABC AC2 = AB2 + BC2 = (3k)2 + (4k)2 =9k2 + 16k2 = 25k2 =(5k)2 AC = 5k BC 4k 4 Sin A = Opposite side to A / hypotenuse = AC 5 k 5 Cos A = adjacent side to A / hypotenuse = AB 3 k 3 AC 5 k 5 30 Exercise – 11.1 6. If A and X are acute angles such that Cos A = Cos X then show that A = X . X Given that , in triangle ΔACX Cos A = Cos X. For angle A in ΔACX A AC Cos A AX C For angle X in ΔACX CX Cos X AX AC CX Cos A = Cos X AX AX AC CX CX AC A X 31 Exercise – 11.1 7 7. Given Cot , then evaluate 8 (1 Sin )(1 Sin ) (1 Sin ) i. ii. (1 Cos )(1 Cos ) Cos C Given that Cot = 7 / 8 = Adjacent side to / Opposite side to A Adjacent side : Opposite side = 7:8 8k 113k 7k B Adjacent side to = AB = 7k ( Where k be any positive number) Opposite side to = BC =8k According to Pythagoras theorem in ΔABC AC2 = AB2 + BC2 = (7k)2 + (8k)2 = 49k2 + 64k2 = 113k2 = ( 113k )2 AC 113k Sin = Opposite side to / hypotenuse = BC 8k 8 AC 113 k 113 Cos = Adjacent side to / hypotenuse = AB 7 k AC 7 113 k 113 32 113k (1 Sin )(1 Sin ) 1 Sin i. 2 (1 Cos )(1 Cos ) 1 Cos 2 2 8 64 113 64 1 1 49 113 113 113 2 49 113 49 64 7 1 1 113 113 113 8 1 (1 Sin ) 113 ii. 7 Cos 113 113 8 113 7 113 8 113 7 33 Exercise – 11.1 8. In a right angle triangle ABC , right angle at B , if tan A 3 then find the values of i) Sin A Cos C+ Cos C Sin A ii) Cos A Cos C – Sin A Sin C Solution : Given that , in a right angle A triangle ABC , right angle at B and C 2k 3k k B 3 = Opposite side to A / hypotenuse 1 Opposite side : adjacent side = 3 :1 tan A 3 Opposite side to A = BC = 3k ( where k be any positive number ) Adjacent side to A = AB =1k = k According to Pythagoras theorem in ΔABC AC2 = AB2 + BC2 = 3k 2 k 3k 2 k 2 4k 2 2k 2 2 AC 2k Sin A= Opposite side to A / hypotenuse = Sin C = Opposite side to C / hypotenuse = 3k 3 2k 2 k 1 2k 2 34 Cos A= Adjacent side to A / hypotenuse = k 1 2k 2 C Cos C= Adjacent side to C / hypotenuse = 2k 3k 3k 3 2k 2 i) Sin A Cos C+ Cos C Sin A A k B 1 3 3 1 1 3 1 3 1 4 1 2 2 22 4 4 4 4 ii) Cos A Cos C – Sin A Sin C 1 3 31 3 3 0 2 2 2 2 4 4 35 11.3 Trigonometric Ratioes of Some Specific Angles C 11.3.1 Trigonometric Ratio of 450 In isosceles right angle triangle ABC , right angle at B A=C=450 and Let BC=AB = a 2a By Pythagoras theorem in Δ ABC AC2 = AB2 + BC2 = a a 2a 2 2 2 2a 450 a 2 a A AC 2a B 1 Sin 450 = Opposite side to 450 / hypotenuse = AB a 1 AC 21a 2 BC a 1 Cos side to / hypotenuse AC 2a 2 1 = AB a 0 0 0 1 Tan 45 = Opposite side to 45 / Adjacent side to 45 = BC a 1 BC a 0 0 0 1 Cot 45 = Adjacent side to 45 / Opposite side to 45 = AB a 450 = Adjacent 450 AC 2a 2 Sec hypotenuse / Adjacent side to = AB a Cosec 450 = hypotenuse / Opposite side to 450 = AC 2a 236 BC a 450 = 450 11.3.2 Trigonometric Ratioes of 300 and 600 Consider an equilateral triangle ABC. In Δ ABC A=B=C= 600 and Let AB=BC=CA = 2a A Draw a perpendicular line AD from vertex A to BC as shown in 2a adjacent figure . Perpendicular AD acts as angle bisector of angle A and bisector of the the 0 60 side BC in the equilateral triangle ABC . B 0 30 30 0 2a 3a 600 a Therefore , ΔABC BAD =CAD=300 and point D divides the side BC into equal halves. BD= ½ BC = ½ . 2a = a D 2a a C By Pythagoras theorem in Δ ABD AD2 = AB2 - BD2 = 2a a 4a a 3a 2 2 2 2 2 3a 2 AD 3a 37 1 Sin 300 = Opposite side to 300 /hypotenuse Cos 300 = Adjacent side to 300 /hypotenuse BD a 1 AB 2a 2 AD 3a 3 AB 2a 2 Tan 300 = Opposite side to300 /Adjacent side to 300 1 300 2a BD a 1 AD 3a 3 3a a B Cot 300 = Adjacent side to 300/ Opposite side to 300 AD 3a 3 3 BD a 1 Sec 300 = hypotenuse / Adjacent side to A 300 D AB 2a 2 2 BD a 1 1 Cosec 300 = hypotenuse / opposite side to 300 AB 2a 2 AD 3a 3 38 Sin 600 = Opposite side to 600 / hypotenuse AD 3a 3 AB 2a 2 A 0 0 Cos 60 = Adjacent side to 60 / hypotenuse 1 BD a 1 AB 2a 2 Tan 600 = Opposite side to 600/ Adjacent side to 600 AD 3a 3 3 BD a 1 2a 3a 600 a B 1 D Cot 600 = Adjacent side to 600 / Opposite side to 1 600 Sec 600 = BD AD a 1 3a 3 hypotenuse / Adjacent side to 600 AB 2a 2 2 BD a 1 1 Cosec 600 = hypotenuse / opposite side to 600 AB 2a 2 AD 3a 3 39 11.3.3 Trigonometric Ratio of 00 Suppose a Segment AC of length r is making an acute angle with ray AB. Height of C r from B is BC. When AC leans more on AB so that the angle made by it A decreases . As the angle A r decreases , the height of C C C from AB ray decreases and foot B is shifted from B to B1 and B2 gradually when the angle becomes zero, height ( i.e.opposite side of the angle ) B B1 A A will also become zero and adjacent side would be equal to r. C 0 B C B2 If A = 00 then BC = 0 and AC = AB = r BC 0 0 AC r AB r Cos 00 1 AC r Sin 00 BC 0 Tan 0 0 AB r 0 Cosec 00 AC r BC 0 Sec 00 AC r 1 AB r AB r Cot 00 BC 0 40 11.3.3 Trigonometric Ratio of 900 C When angle made by AC with ray AB increased, height of Point C increases and the foot of the perpendicular shifts from B to Y and then to X and so on. Height BC increases gradually , the angle on C gets continuous increment and at one stage the angle reaches 900. At that time , point B reaches A and AC equal to BC . When the angle becomes 900 , base ( i.e. adjacent side of the angle ) would become zero , height of C from AB ray increases and it would be equal to AC and that is the length A equal to r . A C X C C C Y B C B A Y B If A = 900 then AB = 0 and AC = BC = r BC r Sin 90 1 AC r AB 0 0 Cos 90 0 AC r 0 BC r Tan 90 AB 0 0 AC r Cosec 90 1 BC r 0 AC r Sec 90 AB 0 AB 0 0 Cot 90 0 BC r 0 41 Do this Find Cosec 600 , Sec 600 and Cot 600 . 1 1 2 2 Co sec 60 1. 0 sin 60 3 3 3 2 0 1 1 2 2 Se c 30 1. 0 Cos 30 3 3 3 2 1 0 cot 60 0 Cos 600 0 Sin 60 2 3 2 1 3 42 Think – Discuss 1 1. What can you say about Co sec 0 Sin 00 ? Is it defind ? Why? 1 1 Co sec 00 0 Sin 0 0 0 Reason : Division by zero is not Possible So it is not defined . 1 2. What can you say about Cot 0 ? Is it defind ? Why? 0 Tan 0 0 1 1 Cot 0 0 Tan 0 0 0 Reason : Division by zero is not Possible So it is not defined . 3. Sec 00 1? Why? 1 1 Sec 0 1 0 Cos 0 1 0 43 Table of Trigonometric Ratioes A 00 300 450 600 900 Step : 1 0 1 2 3 4 Step : 2 0 4 1 4 2 4 3 4 4 4 Divide each one by 4 Step : 3 0 4 1 4 2 4 3 4 4 4 Find the square root of each Step : 4 0 0 4 1 1 4 2 Sin A 0 1 2 1 2 3 3 4 2 3 2 Cos A 1 3 2 1 1 2 1 2 1 Tan A 0 Cot A Sec A 1 Cosec A 3 3 2 3 2 2 1 4 2 2 4 1 4 1 0 1 3 1 1 3 0 2 2 2 2 3 1 Particulars Write from 0 to 4 serially Simplify Sin Value Write Sin values reversely Sin Cos Write Tan Values reversly 1 Cos Write Sec Values reversly 44 Think – Discuss What can you say about the value of Sin A and Cos A , as the value of angle A increases from 00 to 900? ( Observe the above table ) (i) If A B then SinA Sin B. Is it true ? Solution : Given statement is If A B then SinA Sin B. The Following table gives the evidence to say the given statement is true. If angle A increases then its sine values are also increases. A Sin A 00 300 450 0 1 2 1 2 600 900 3 2 1 (ii) If A B then Cos A Cos B. Is it true ? Solution : Given statement is If A B then Cos A Cos B. Given statement is False. Because if value of angle A increases then its cos values are decreases. A 00 300 450 600 900 Cos A 1 3 2 1 2 1 2 0 45 Example - 4 Adjacent side to 300 = BC 5 cm In ΔABC, right angle is at B , AB= 5 cm and ACB=300 , Determine the lengths of the sides BC and AC. Solution: Given that in ΔABC, right angle at A B , AB = 5 cm and ACB=300 Opposite side to 300 = AB = 5 cm 300 AB tan 300 BC B C 5 3 5 1 BC 3 BC 5 3 cm By using Pythagoras theorem in Δ ABC , AC2 = AB2 + BC2 AC 5 5 3 2 2 2 25 25.3 25 75 100 10 2 AC 10 cm 46 Example- 5 A Chord of a circle of radius 6 cm is making an angle 600 at the centre. Find the length of the chord? Solution : Given that radius of the circle OA=OB=6 cm AOB = 600 OC is height from O upon AB and it is 0 angle bisector 300 30 COB=COA= 300 Length of the chord AB = 2AC=2BC BC Sin300 OB A C 0 B BC 1 6 2 2BC 6 3 6 BC 3 2 Length of the chord AB = 2BC=2(3)=6 cm 47 Example:6 In Δ PRQ, right angle is at Q , PQ = 3cm and PR = 6 cm. Determine QPR and PRQ . Solution : Given PQ = 3 cm and PR = 6cm P For the angle of R in ΔPQR 600 3 cm PQ Sin R PR 1 90 3 Sin R 6 0 Q 300 R 2 1 Sin R 2 P Q R 1800 P 900 300 1800 Sin300 Sin R P 1200 1800 R 300 P 1800 1200 PRQ 30 0 P 600 QPR 600 48 Example : 7 If Sin( A B ) 1 1 , Cos ( A B ) , 00 A B 900 2 2 A > B , Find A and B . 1 Sin( A B) 2 Sin( A B) Sin 30 A B 30 0 1 Cos ( A B ) 2 Cos( A B) Cos 600 A B 600 A B A B 300 600 0 2 A 90 0 45 90 A 450 2 A B 60 0 450 B 600 B 600 450 B 150 49 Exercise 11.2 1. Evaluate the following (i) sin 450 +cos 450 sin 450 +cos 450 1 1 11 2 2 2 2 2 2. 2 2 2 cos 450 (ii) sec 300 +cosec600 1 2 1 1 cos 450 1 3 3 2 2 . 0 0 2 2 22 4 sec 30 +cosec60 2 4 4 2 3 3 3 3 50 Exercise 11.2 Sin300 tan 450 cos ec600 (iii ) cot 450 cos 600 sec 300 1 1 2 0 0 0 Sin30 tan 45 cos ec60 2 1 3 0 0 0 1 1 2 cot 45 cos 60 sec 30 1 2 3 32 34 3 34 2 3 1 3 34 2 3 3 4 2 3 2 0 2 0 2 0 (iv) 2tan 45 +cos 30 - sin 60 2 3 2tan 45 +cos 30 - sin 60 2 1 2 3 3 2 1 2 4 4 2 0 2 0 2 0 2 51 Exercise 11.2 Sec2 600 - tan 2 600 (v ) Sin 2 300 + Cos 2 300 2 3 Sec 2 600 - tan 2 600 2 2 0 2 0 2 Sin 30 + Cos 30 1 3 2 2 2 2 2 3 43 1 1 1 1 2 2 1 3 1 3 4 1 3 1 4 4 4 4 2 2 2.Choose the right option and justify your choice. ( c ) 2 tan 2 300 2 2 (i ) 1 tan 2 450 (a) Sin 600 (b) Cos 600 (c) tan 300 (d) Sin 300 1 2 2 2 2 1 1 0 2 tan30 3 3 3 0 . tan 30 2 1 tan 2 450 1 12 11 3 2 3 1 52 Exercise 11.2 2.Choose the right option and justify your choice. 1- tan 2 450 (ii ) 1+ tan 2 450 (a) tan (b) 1 900 d ( ) (c) Sin 450 (d) 0 1 1 1- tan 45 1 1 0 0 2 2 0 1+ tan 45 11 2 1 1 2 2 0 0 2tan30 (iii ) 2 0 1-tan 30 (a) Cos 600 2 2tan300 1-tan 2 300 1 1 3 (b) Sin 600 c ) (c) tan 600 ( 2 2 3 3 2 1 1 1 3 1 3 3 3 (d) Sin 300 2 3. 3 3 2 3 . 3 tan 600 2 3 2 3 3 53 Exercise 11.2 3.Evaluate Sin 600cos 300 + cos 600 Sin 300 . What is the value of Sin ( 600 + 300 ). What can you conclude ? Solution : Sin 600cos 300 + Cos 600 Sin 300 1 3 3 1 1 3 1 3 1 4 . . 1 ………….1 2 2 2 2 4 4 4 4 Sin ( 600 + 300 ) = Sin 900 =1 ………….2 From 1 and 2 Sin ( 600 + 300 ) = Sin 600cos 300 + Cos 600 Sin 300 Sin ( A + B ) = Sin A cos B + Cos A Sin 300 54 Exercise 11.2 4. Is it right to say Cos(600 + 300 ) = cos 600 Cos 300 – Sin 600 Sin 300 Solution : Cos600 cos 300 – Sin 600 Sin 300 1 3 3 1 3 3 . . 0 ………….1 2 2 2 2 4 4 Cos ( 600 + 300 ) = Cos 900 = 0 ………….2 From 1 and 2 Cos ( 600 + 300 ) = Cos 600cos 300 – Sin 600 Sin 300 Therefore it is right to say Cos(600 + 300 ) = cos 600 Cos 300 – Sin 600 Sin 300 55 Exercise 11.2 5. In a right angle triangle ΔPQR, right angle is at Q and PQ = 6 cm , RPQ = 600 . Determine the lengths of QR and PR . Solution : Given that right angle at Q in ΔPQR P and PQ = 6 cm , RPQ = 600 For angle P in ΔPQR 0 QR Tan 600 PQ QR 3 6 QR 6 3 cm QR Sin 600 PR 6 cm 60 900 Q 6 3 cm R 6 3 3 PR 2 6 1 PR 2 PR 12 cm 56 Exercise 11.2 6. In ΔXYZ, right angle is at Y , YZ = x and XY = 2x then determine YXZ and YZX (2x)2 = (x)2 + YZ2 Tan 600 Tan X 4x2 = x2 + YZ2 YZ2 = 4x2 – x2 YZ2 = 3x2 YZ 2 3x X 60 YXZ 600 For angle Z in ΔXYZ 3x Tan X x 3 Tan X 600 90 Y 0 300 3x Z 2 YZ 3x For angle X in ΔXYZ YZ Tan X XY 0 X x Solution : In ΔXYZ , right angle is at Y , XZ = 2x , XY = x By using Pythagoras theorem XZ2 = XY2 + YZ2 XY Tan Z YZ 1 x Tan Z 3x 1 Tan Z 3 Tan 300 Tan Z Z 300 YZX 300 57 Exercise 11.2 7. Is it right to say that Sin (A+B) = Sin A + Sin B ? Justify your answer Solution : Let A = 600 and B = 300 LHS Sin (A+B) = Sin (600 + 300 ) = Sin 900 = 1 RHS Sin A + Sin B = Sin 600 + Sin 300 3 1 3 1 = 2 2 2 LHS RHS It is not right to say that Sin (A+B) = Sin A + Sin B 58 Think – Discuss For which value of acute angle Cos Cos 4 Is true ? 1 Sin 1 Sin For which value of 00 900, above equation is not defined? Cos Cos Solution : 2Cos 1 4 1 Sin 1 Sin Cos (1 Sin ) Cos (1 Sin ) 1 4 Cos (1 Sin )(1 Sin ) 2 Cos Cos .Sin Cos Cos .Sin 4 2 2 (1) (Sin ) 2Cos 4 2 cos 2Cos 4 2 1 Sin 1 2 2 Cos 4 Cos . Cos Cos Cos600 600 For = 600 the given statement is true . 59 Trigonometric Ratioes of complementary Angles Two angles are said to be complementary , if their sum is equal to 900 BC Tan x AB AC Cosec x BC AC Sec x AB AB Cot x BC A C 900 C 90 A 0 Let C x A 90 0 Adjacent side to x A x Opposite side to x Adjacent side to 900 - x BC Sin x AC AB Cos x AC B Opposite side to 900 - x C 900 x AB Sin(90 - x) Cos x AC BC 0 Cos (90 - x) Sin x AC 0 AB Tan (90 - x) Cot x BC 0 AC Cosec (90 - x) Sec x AB 0 Sec (900 - x) AC Co sec x BC BC Cot (90 - x) Tan x AB 0 60 Sin (90 A) Cos A 0 Cos (90 A) Sin A 0 Tan (90 A) Cot A 0 Cot (90 A) Tan A 0 Sec (90 A) Co sec A 0 Cosec (90 A) Sec A 0 61 Example: 8 Sec350 Evaluate Co sec 550 0 Sec 35 Solution: Co sec 550 Sec350 Co sec(900 350 ) 1 0 Sec 35 0 Sec 35 ( Co sec (90 A) Sec A ) 1 62 Example : 9 If Cos 7 A Sin ( A 60 ) Where 7A is an acute angle, Find the value of A . 0 Solution : Given Cos 7 A Sin ( A 6 ) Sin (900 7 A) Sin ( A 60 ) Since 7A is an actute angle, ( 900 – 7A ) and ( A – 60 ) are also actute (90 7 A) ( A 6 ) ( Sin A Sin B A B) 0 0 90 7 A A 6 0 0 90 6 A 7 A 0 0 960 8A 12 96 A 8 A 12 0 0 63 Example : 10 If Sin A = Cos B , then Prove that A + B = 900. Given that Sin A = Cos B Solution : SinA Sin(900 B) ( Cos B Sin(900 B) ) ( Sin A Sin B A B) A 900 B A+B 900 Example : 11 Express Sin 810 + Tan 810 in terms of trigonometric ratioes of angle between 00 and 450 Sin 81 Cos(90 81 ) Cos 9 0 0 0 0 Tan 81 Cot (90 81 ) Cot 9 0 0 0 0 Sin 81 +Tan 81 Cos 9 Cot 9 0 0 0 64 0 Example : 11 If A,B and C are interior angles of right angle triangle ABC then Show that BC A Sin Cos 2 2 Solution : Given A,B and C are interior angles of right triangle ABC then A B C 180 90 A B C 180 2 2 A BC 900 2 2 BC A 0 90 2 2 On taking Sin ration on both sides BC A 0 Sin Sin (90 ) 2 2 BC A Sin Cos 2 2 65 Exercise 11.3 1. Evaluate tan 360 0 0 0 0 ( iii ) Co sec31 Sec 59 (i ) ( ii ) Cos 12 Sin 78 cot 540 (iv) Sin 150.Sec 750 (v) Tan 260 .Tan 640 tan 360 (i ) cot 540 Solution : 1 0 tan 36 tan 360 1 0 0 0 cot(90 36 ) tan 36 (ii ) Cos120 Sin780 Cos(90 780 ) Sin780 =Sin 780 Sin 780 0 (iii) Co sec31 Sec 59 Co sec31 Sec (90 - 31 ) Co sec 310 Co sec 310 0 0 0 0 0 0 0 0 0 = Sin 15 .Sec (90 -15 ) (iv) Sin 15 .Sec 75 0 0 1 = Sin 15 .Cosec 15 = Sin 15 . Sin 150 1 0 0 0 0 0 0 0 0 (v) Tan 26 .Tan 64 =Tan 26 .Tan (90 - 26 ) 1 =Tan 26 .Cot 26 = Tan 26 . 1 0 Tan 26 0 0 0 66 Exercise 11.3 2. Show that (i) tan 48 tan16 tan 42 tan 74 1 0 0 0 0 (ii)Cos 36 Cos 54 Sin 36 Sin 54 0 0 Solution: 0 0 0 (i ) LHS tan 480 tan160 tan 420 tan 740 tan 480 tan160 tan(900 480 ) tan(900 160 ) tan 480 tan160 Cot 480 Cot160 1 1 0 0 tan 48 tan16 1 RHS 0 0 tan 48 tan16 LHS = RHS (ii) LHS Cos 360Cos 540 Sin 360 Sin 540 = Cos 360Cos (900 360 ) Sin 360 Sin(90 360 ) = Cos 360Sin 360 Sin 360Cos 360 0 0 = Cos 36 Sin 36 Cos 36 Sin 36 0 RHS 0 0 LHS = RHS 67 Exercise 11.3 Another Method of Solution (ii)Cos 360Cos 540 Sin 360 Sin 540 0 (ii) LHS Cos 360Cos 540 Sin 360 Sin 540 Cos (90 540 )Cos(90 360 ) Sin 360 Sin 540 Solution: Sin 54 Sin 36 Sin 36 Sin 54 0 0 0 0 Sin 54 Sin 36 Sin 54 Sin 36 0 0 0 0 0 RHS LHS = RHS 3. If Tan 2A = Cot (A – 180), where 2 A is an acute anlgle. Find the value of A . Solution : Tan 2A = Cot (A – 180) Cot ( 900 – 2A) = Cot (A – 180) ( 900 – 2A) = (A – 180) tan A Cot (900 A) Cot A = Cot B AÆÿ$$¯èþ A=B 900 +180 = A + 2A 3A = 1080 36 108 A 360 3 68 Exercise 11.3 4. If Tan A = Cot B where A and B are actute angles , Prove that A+B=900 Solution : Given that Tan A = Cot B Cot (900 A) cot B 900 A B tan A cot(900 A) CotA CotB A B 90 A B 0 A B 90 69 Exercise 11.3 5. If A,B and C are interior angles of a triangle ABC, then show that A B C tan Cot 2 2 Solution : Given that A,B and C are interior angles of a triangle ABC A B C 180 90 A B C 180 2 2 A B C 900 2 2 A B C 0 90 2 2 By taking tan ratio on both sides A B C 0 tan tan( 90 ) 2 2 A B C tan cot 2 2 70 Exercise 11.3 6. Express Sin 750 + cos 650 in terms trigonometric ratioes of angles between 00 and 450 Sin 75 Sin(90 15 ) Cos 15 0 0 0 0 cos 65 cos(90 35 ) Sin 35 0 0 0 0 Sin 75 cos 65 Cos 15 Sin 35 0 0 0 0 71 11.5 Trigonometric Identities Consider a right angle triangle ABC with right angle at B . From Pythagoras theorem AC2 + AB2 = AC2 C Dividing each term by AC2 BC 2 AB 2 AC 2 2 AC AC 2 2 1 2 90 0 B 2 A BC AB AC 2 2 2 AC AC AC BC 2 AB 2 1 2 2 AC AC 2 2 BC AB 1 AC AC Sin A 2 Cos A 1 2 Sin A Cos A 1 2 2 required trigonometric identity . 72 11.5 Trigonometric Identities Consider a right angle triangle ABC with right angle at B . From Pythagoras theorem AC2 + AB2 = AC2 C Dividing each term by AB2 BC AB AC 2 2 AB AB 2 2 1 2 2 BC AC 1 2 2 AB AB 2 B 2 BC 2 AB AC 2 2 2 2 AB AB AB 2 90 0 BC AC 1 AB AB 2 A 2 2 AC BC 1 AB AB Sec A tan A 2 2 1 Sec A tan A 1 2 2 required trigonometric identity 73 11.5 Trigonometric Identities Consider a right angle triangle ABC with right angle at B . From Pythagoras theorem AC2 + AB2 = AC2 C Dividing each term by BC2 BC 2 AB 2 AC 2 2 BC BC 2 BC 2 AB 2 AC 2 2 2 BC BC BC 2 1 BC 2 AB 2 AC 2 2 2 BC BC BC 2 2 2 AB AC 1 2 BC BC 2 2 AB AC 1 BC BC 2 90 0 B 2 A 2 AC AB 1 BC BC Co sec A Cot A 2 2 1 Co sec A Cot A 1 2 2 required trigonometric identity 74 Sin 2 A Cos 2 A 1 Sin A Cos A 1 Sin A 1 Cos A Cos A 1 Sin A 2 2 2 2 2 2 Cos A 1 Sin2 A Sin A 1 Cos 2 A Sec A tan A 1 Sec 2 A 1 tan 2 A Sec 2 A tan 2 A 1 2 2 tan A Sec A 1 Sec A 1 tan A tan A Sec2 A 1 2 2 2 Co sec A Cot A 1 2 2 Co sec A Cot A 1 2 2 Co sec A 1 Cot A Cot A Co sec A 1 Co sec A 1 Cot A Cot A Co sec2 A 1 2 2 2 2 2 75 15 then finc Cos A Do this (i ) If Sin A 17 2 Cos A 1 Sin A 2 15 1 17 2 64 8 289 17 1 225 289 225 289 289 8 17 5 then find Sec x (ii ) If tan x 12 2 25 5 2 1 1 Sec x 1 tan x 12 144 144 25 144 2 169 13 13 12 144 12 25 then find cot (iii ) If Cosec 7 2 25 2 Cot Co sec 1 1 7 24 7 2 625 49 625 576 1 49 49 49 242 72 24 7 76 Try This Evaluate the following and Justify your answer. 0 0 0 0 ( ii ) Sin 5 Cos 85 Cos 5 Sin 85 Sin 15 Sin 75 (i) 0 0 0 0 2 0 2 0 ( iii ) Sec 16 Co sec 74 Cot 74 tan 16 Cos 36 Cos 54 2 0 2 0 Sin 2150 Sin 2 750 (i) Cos 2 360 Cos 2 540 Sin2150 Sin2 (900 150 ) Cos 2 360 Cos 2 (900 360 ) Sin(90 ) cos Sin2150 Cos 2150 Cos 2 360 Sin2 360 1 1 1 Cos (90 ) Sin Sin2 Cos 2 1 Cos 2 Sin 2 1 (ii) Sin 50Cos 850 Cos 50 Sin 850 = Sin 50Cos (900 50 ) Cos 50 Sin (900 50 ) = Sin 5 Sin 5 Cos 5 Cos 5 0 0 0 0 Cos (90 ) Sin Sin(90 ) cos Sin 2 Cos 2 = Sin 2 50 Cos 2 50 = 1 (iii) Sec 160Co sec 740 Cot 740tan 160 1 = Sec 160 Co sec (900 160 ) Cot (90 160 ) tan 160 = Sec 160 Sec 160 tan 160 tan 160 = Sec 16 tan 16 = 1 2 0 2 0 Sec2 tan 2 1 77 Example : 13 Show that Cot + tan = Sec Cosec LHS Cot + tan Cot Cos Sin = + Sin Cos Cos 2 Sin2 = Sin .Cos tan Cos Sin Sin Cos ( Cos2 Sin2 1) 1 1 1 1 1 = = . = . Sin Cos Cos Sin Sin .Cos Sec = 1 Cos Cosec = Sec Co sec RHS LHS RHS Example : 14 Show that tan2 + tan4 = Sec4 – sec2 LHS tan 4 tan 2 tan 2 tan 2 tan 2 .1) tan 2 (tan 2 1) ( Sec 2 1).Sec 2 ( Sec 2 .Sec 2 Sec2 .1) Sec Sec RHS 4 2 1 Sin tan 2 Sec 2 1 Sec 2 1 tan 2 LHS RHS 78 Example : 15 Show that 1 Cos Co sec Cot 1 Cos 1 Cos LHS 1 Cos 1 Cos (1 Cos ) 1 Cos (1 Cos ) (1 Cos ) 2 12 Cos 2 (1 Cos ) 2 1 Cos 2 (a b)(a b) a 2 b2 1 Cos 2 Sin 2 (1 Cos ) 2 Sin 2 1 Cos Sin 2 1 Cos Sin 1 Cos Sin Sin Co sec Cot 1 Sin Cos Sin Co sec Cot RHS LHS RHS 79 Exercise :11.4 1. Evaluate the following (i ) (1 tan Sec )(1 Cot Cosec ) (ii) (Sin Cos )2 (Sin Cos )2 (iii ) (Sec2 1)(Cose2 1) Solution: (i ) (1 tan Sec )(1 Cot Cosec ) Sin tan Cos 1 Sec Cos Cos Cot tan 1 Cosec Sin 1 Cos 1 Cos Sin 1 Sin Cos 1 Sin 1 1 Cos Sin Cos Cos Sin sin Cos Sin 2 12 Cos .Sin Cos Sin2 2Cos sin 1 Cos . Sin 2 1 2Cos sin 1 1 2Cos sin 1 2 Cos sin Cos . Sin Cos . Sin Cos . Sin 2 80 1. Evaluate the following Exercise :11.4 (ii) (Sin Cos )2 (Sin Cos )2 (iii ) (Sec2 1)(Cose2 1) Solution: (ii) (Sin Cos )2 (Sin Cos )2 (a b)2 a 2 b2 2ab (a b) a b 2ab 2 2 2 Sin 2 Cos 2 2Sin Cos Sin 2 Cos 2 2Sin Cos (Sin Cos ) (Sin Cos ) 2 2 2 2 Sin 2 Cos 2 1 11 2 (iii ) (Sec2 1)(Cose2 1) ( Sec 1 tan ) 2 2 ( Cose2 1 cot 2 ) tan .cot 2 2 1 tan . tan 2 2 1 81 Exercise : 11.4 2. Show that Co sec Cot LHS Co sec Cot Cos 1 Sin Sin 1 Cos 2 2 Sin 2 1 Cos Cosec 1 Sin 1 Cos Sin 2 1 Cos 1 Cos Cos Cot tan 1 Cos 2 Sin 2 Sin 2 1 Cos 2 1 Cos 2 1 Cos 2 2 2 12 Cos 2 2 a 2 b2 (a b)(a b) 1 Cos 1 Cos 1 Cos 1 Cos 1 Cos 1 Cos RHS LHS RHS 82 Exercise : 11.4 3. show that LHS 1 SinA SecA TanA 1 SinA 1 SinA 1 SinA 1 SinA (1 SinA) 1 SinA (1 SinA) (1 SinA) 12 Sin 2 A (1 SinA) 2 1 Sin 2 A (1 SinA) 2 Cos 2 A 1 Sin A Cos A 1 Sin A Cos A (a b)(a b) a 2 b2 2 ( 1 Sin2 A Cos 2 A) 1 Sin A Cos A Cos A 2 ( 1 Sec A) Cos A ( Sin A Tan A) Cos A Sec A Tan A RHS LHS RHS 83 Exercise : 11.4 1 Tan2 A 2 4. Show that Tan A 2 Cot A 1 1 Tan 2 A LHS Cot 2 A 1 1 Tan 2 A 1 1 2 Tan A Cot 2 A 1 Tan 2 A 1 1 Tan 2 A Tan 2 A 1 Tan2 A Tan2 A . 1 1 Tan2 A Tan A RHS 2 LHS RHS 1 Tan 2 A Another Method 1 Tan 2 A LHS Cot 2 A 1 Sin A Cos A Cos A Cot A Sin A Tan A Sin 2 A 1 2 Cos A Cos 2 A 1 2 Sin A Cos 2 A Sin 2 A 2 Cos A Cos 2 A Sin 2 A Sin 2 A Cos 2 A Sin2 A Sin2 A . 2 Cos A Cos 2 A Sin2 A Sin 2 A Cos 2 A Tan 2 A RHS LHS RHS Sin A Tan A Cos A 84 Exercise : 11.4 1 5. Show that Cos tan .Sin Cos 1 LHS Cos 1 Cos 1 Cos 2 2 2 ( 1 Cos Sin ) Cos Cos 1 Cos Sin 2 Sin .Sin Cos Cos Sin tan Cos tan .Sin RHS LHS RHS 6. Simplify SecA(1 SinA)( SecA tan A) SecA(1 SinA)( SecA tan A) = (SecA.1 SecA.SinA)( SecA tan A) 1 = (SecA .SinA)( SecA tan A) CosA SinA = (SecA )( SecA tan A) CosA = (SecA tan A)( SecA tan A) = Sec A tan A 2 2 1 ( ( 1 SecA ) CosA SinA tan A CosA (a b)(a b) a 2 b2 Sec 2 A tan 2 A 1) 85 Exercise : 11.4 7.Pr ove that (SinA Co sec A)2 (CosA SecA) 2 7 tan 2 A Cot 2 A LHS (SinA Co sec A) (CosA SecA) 2 (a b)2 a 2 b2 2ab 2 (Sin2 A Co sec2 A 2SinA.Co sec A) (Cos 2 A Sec 2 A 2CosA.SecA) Se c A 1 Co sec A sin A 1 Cos A 1 1 2 2 ( Sin A Co sec A 2 SinA . ) (Cos A Sec A 2 CosA . ) SinA CosA 2 2 ( Sin2 A Co sec2 A 2) (Cos 2 A Sec 2 A 2) Sec 2 A 1 tan 2 A Co sec2 A 1 Cot 2 A (Sin2 A 1 Cot 2 A 2) (Cos 2 A 1 Tan2 A 2) Sin A Cos A Tan A Cot A 6 2 2 2 2 ( Sin2 A Cos 2 A 1) 1 Tan 2 A Cot 2 A 6 7 Tan 2 A Cot 2 A LHS RHS RHS 86 Exercise : 11.4 8. Simplify (1 Cos )(1 Cos )(1 Cot ) 2 (1 Cos )(1 Cos )(1 Cot 2 ) (a b)(a b) a 2 b2 1 Cot Co sec (12 Cos 2 )(Co sec2 ) 1 2 1 (1 Cos )( ) Co sec sin Sin 2 1 2 Sin . 2 2 2 ( 1 Cos Sin ) Sin 2 2 1 9. If Secθ+tanθ = p then what is the value of Sec tan ? Given that Sec tan p a 2 b2 (a b)(a b) Sec tan 1 ( Sec tan )( Sec tan ) 1 2 2 p ( Sec tan ) 1 1 Sec tan p 87 Exercise : 11.4 10. If Co sec Cot k then prove that k 2 1 Cos 2 k 1 Co sec Cot k ............1 2 2 2 2 a b (a b)(a b) Co sec Cot 1 (Co sec Cot )(Co sec Cot ) 1 (Co sec Cot )( k ) 1 1 ............ 2 Co sec Cot k Adding 1 and 2 1 Co sec Cot 2Co sec Cot k k k 1 2Co sec k k 2 1.............. 3 Co sec 2k Subtracting 2 from 1 k 2 1 2Cot k 2 k 1 Cot .............. 4 2k Dividing 4 by 3 k 2 1 Cot k 2 k 2 1 Co sec 2k Cos 2 k Sin 1 1 k 2 1 Sin Cos k 2 1 2 1 k 1 k 2 1 1 Cos 2 Co sec Cot Co sec Cot k k 1 k k 2 1 Co sec Cot Co sec Cot 88 k Exercise : 11.4 10. If Co sec Cot k then prove that k 2 1 Cos 2 k 1 Another method Given that Co sec Cot k k 2 1 RHS k 2 1 2 Co sec Cot 1 = 2 Co sec Cot 1 Cot Co sec Cot 2Co sec .Cot 1 = Co sec Cot 2Co sec .Cot 1 2 2 2 2 ( Co sec2 1 Cot 2 ) ( Cot 2 Co sec2 1) 1 Cot 2 Cot 2 2Co sec .Cot 1 = Co sec2 Co sec2 1 2Co sec .Cot 1 2Cot 2 2Co sec .Cot = 2Co sec2 2Co sec .Cot 2 Cot (Cot Co sec ) = 2 Co sec (Cot Co sec ) Cot = Co sec Cos sin 1 Co sec sin Cos = Sin 1 Sin Cos = 1 = Cos LHS LHS RHS 89 Optional Exercise cot cos cos ec 1 1. Prove that cot cos cos ec 1 cot cos LHS cot cos cos cos .1 = Sin cos cos .1 Sin 1 Cos ( 1) Sin = 1 Cos ( 1) Sin 1 1 = Sin 1 1 1 Sin 1 Cot Cos sin 1 Sin = Sin 1 Sin Sin 1 Sin = 1 Sin RHS LHS= RHS 90 Optional Exercise Sin cos 1 1 2.Prove that Sin cos 1 Sec tan Sin cos 1 Sec 2 tan 2 1 LHS Sin cos 1 ( Sec tan ).1 ( Sec 2 tan 2 ) Dividing Numeratior and Denominator by Cos Sin cos 1 Cos Sin cos 1 Cos Sin cos 1 cos cos cos Sin cos 1 cos cos cos tan 1 Sec tan 1 Sec Sec tan 1 tan 1 Sec tan 1 Sec ( Sec tan ).1 ( Sec tan )( Sec tan ) tan 1 Sec ( Sec tan )(1 ( Sec tan )) tan 1 Sec ( Sec tan ) (1 Sec tan ) (1 Sec tan ) Sin cos tan 1 Sec cos Sec tan Sec tan . Sec tan Sec tan Sec 2 tan 2 Sec tan 1 Sec tan RHS 91 LHS= RHS Optional Exercise 1 3. Prove that Co sec A SinA SecA CosA tan A CotA 1 LHS Co sec A SinA SecA CosA 1 CosA.SinA 1 S ec A CosA 1 Co sec A SinA 1 1 SinA CosA SinA CosA 1 Sin2 A Cos 2 A 1 Sin2 A Cos 2 A CosA.SinA SinA 1 CosA 1 SinA 1 CosA 1 1 Sin 2 A 1 Cos 2 A SinA CosA 1 Sin2 A Cos 2 A 1 Cos 2 A Sin 2 A Cos 2 A Sin 2 A SinA CosA CosA. CosA SinA. SinA . SinA CosA CosA.SinA 1 Sin2 A Cos 2 A CosA.SinA CosA.SinA 1 SinA. SinA CosA .CosA CosA. SinA CosA .SinA SinA tan A cos A 1 tan A cot A CosA CotA SinA RHS LHS= RHS 92 1+SecA Sin2 A 4. Prove that SecA 1 CosA 1+SecA LHS 1+CosA 1 CosA SecA Optional Exercise SecA 1 cos A 1 1 + 1 CosA 1 CosA CosA+1 CosA 1 CosA CosA+1 1 1+CosA 1 1 . 1 CosA a 2 b2 (a b)(a b) 12 Cos 2 A 1 CosA 1 Cos 2 A 1 CosA Sin 2 A 1 CosA RHS LHS= RHS 93 Optional Exercise 1 tan 2 A 1 tan A 2 2 5. Show that tan A 2 2 1 Cot A 1 CotA 2 1 tan A 1 tan A LHS LHS1 2 2 1 CotA 1 Cot A 1 tan 2 A Sec 2 A 1 Cot 2 A Cosec 2 A Sec 2 A Cosec 2 A 1 SecA cos A SinA tan A cos A CotA CosA SinA 2 Co sec A 1 SinA 1 2 Cos A 1 Sin 2 A 1 Sin 2 A . 2 Cos A 1 Sin 2 A SinA tan A 2 Cos A cos A tan 2 A RHS SinA CosA SinA 2 1 cos A cos A SinA CosA CosA 1 SinA SinA SinA CosA cos A SinA CosA SinA 2 1 2 1 SinA cos A . cos A 1 1 SinA 2 2 SinA tan A 2 cos A tan 2 A RHS LHS1 =LHS2 = RHS 94 Optional Exercise SecA 1 1 CosA 6. Prove that SecA 1 1 CosA SecA 1 LHS SecA 1 1 SecA cos A 1 CosA 1 = 1 1 CosA 1 CosA CosA = 1 CosA CosA 1 CosA = 1 CosA LHS= RHS RHS 95