Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lecture XIII Assignment 1. Abstract a research article that utilizes a force platform to collect data. The article should be related to your academic area of interest. Be prepared to give a 10 minute presentation in the next class. Concentrate your presentation and abstract on the methods, procedures, and technical aspects of the use of the force platform. 2. Solve problems 1 and 2 in 5.6 Problems Based on Kinetic and Kinematic Data in our class text. 3. Work on completing the force platform laboratory experiment. It is due at the time of the final examination. Lecture Topics 1. Examination on models and calculation of joint reaction forces and net muscle moments 2. Review of results from internal model lab 3. Force platform lecture 4. Force platform experiment 1. Examination (60 minute limit) 2. Review of Results from Internal Model Lab Internal Model Experiment Internal Model Subject Information and Data Sheet Motivated subject? Limitations Associated with Experiments • Single subject design • Precision in the positioning of the subject • Motivation level of the subject throughout the experiment • Internal model representing reality • Others -------------------------------------------------------- LIMITED GENERALIZABILITY OF RESULTS Mr. Accuracy? Experiment 1 Comparison of Cadaver-Based Measurements of the Moments of Foot and Shank Segments (Multi-Segment System) and Experimentally Measured Moments Similar to Cadaver Data? Experiment 1 – Measured and Calculated Parameters Free Fall at 26 degrees/second Shank and Foot Bar Only Shank Shank Calculated Angle Angle Torque Below Below (Nm) from HoriIntended/ Horizontal Anthro- zontal Actual Angle Torque (deg) pometry (deg) (Rad) Used (Nm) 0 7.995 0 3.14/3.145 15 7.72 15 2.88/2.876 4.899 30 6.92 30 2.618/2.607 4.625 45 5.65 45 2.356/2.371 4.625 60 4 60 2.094/2.102 3.259 75 2.069 75 xxx 90 0 90 xxx 1.62 Shank, Foot, and Bar Intended Shank Angle Shank Below Intended/ Hori- Actual Angle Torque zontal (Rad) Used (Nm) 0 15 2.88/2.88 15.55 30 2.618/2.614 13.37 2.356/2.345 45 2 8.997 2.094/2.109 60 2 5.992 1.833/1.874 75 2 1.703 90 1.571 Static Condition (0 Angular Velocity) and No Muscular Contraction Shank, Foot, and Bar Intended Shank Shank Angle Intended/ Below Actual Hori- Angle (Rad) Torque zontal Used (Nm) 0 15 2.88/2.85 15.28 30 2.618/2.614 17.47 2.356/2.345 45 2 14.19 2.094/2.109 60 2 10.09 1.833/1.807 75 2 5.445 1.571/1.605 90 2 4.625 Torque (Nm) Free Fall at 26 degrees/ Anthrosecond pometry Sum Shank Angle Below Horizontal (deg) 0 15 30 4.899 4.625 45 4.625 5.65 10.275 60 3.259 4 7.259 75 1.62 2.069 3.689 90 Bar Shank, Foot, Shank and and Foot Bar 7.995 7.72 12.619 6.92 11.545 0 Torque (Nm) What interpretation did you make of this data? 20 Shank and Foot - Anthropometry 18 Bar Only - Free Fall (26 deg/sec) 16 Shank, Foot, and Bar - Free Fall (26 deg/sec) 14 Shank, Foot, and Bar - Static (0 deg/sec) Sum of Anthropometry and Bar Only 12 10 8 6 4 2 0 0 15 30 45 60 75 Shank or Corresponding Angle of Shank Below Horizontal (deg) 90 Torque (Nm) • Calculated torque from anthropometry plus bar approximates measured static and free fall torque of shank, foot, and bar. 20 Shank and Foot - Anthropometry 18 Bar Only - Free Fall (26 deg/sec) 16 Shank, Foot, and Bar - Free Fall (26 deg/sec) 14 Shank, Foot, and Bar - Static (0 deg/sec) Sum of Anthropometry and Bar Only 12 10 8 6 4 2 0 0 15 30 45 60 75 Shank or Corresponding Angle of Shank Below Horizontal (deg) 90 Experiments 2 and 3 Raw Data Files Experiments 2 and 3 • Biomechanics of Maximum Isometric Knee Flexion Torque for Various Knee Joint Angles •Biomechanics of Maximum Isokinetic Knee Flexion Torque for Various Knee Joint Angles and Angular Velocities Budding Researchers? Experiments 2 and 3 – Measured and Calculated Isometric Parameters Angle of Attachment Knee Joint of Muscle Angle to Shank (Theta 2) (Theta 1) (deg) (deg) 180 3.41 165 13.64 150 30 135 43.5 120 57.4 105 71.5 90 86.2 Muscle Length (OI) (m) 0.4207 0.4185 0.4133 0.4057 0.3953 0.3836 0.3708 Maximum Isometric (0 deg/sec) Torque Joint Applied Joint Force Compres- Force of to Turning Applied to sion Muscle Muscle Cybex Force Cybex Force ContracMoment Arm (Fx) Arm (Fc) (Fy) tion (F1) Power Arm (m) (Nm) (N) (N) (N) (N) (Nm/sec) 0.00297 0.01179 81.953 1639.06 273.1767 6754.4 6950.45 0 0.025 71.023 1420.46 236.7433 2460.31 2840.92 0 0.0344 75.395 1507.9 251.3167 1152.62 2190.59 0 0.04212 80.314 1606.28 267.7133 1027.26 1906.67 0 0.0474 77.581 1551.62 258.6033 519.16 1636.17 0 0.0499 63.919 1278.38 213.0633 84.96 1281.97 0 What interpretation did you make of this data? Maximum Force vs Knee Angle - Isometric 7000 6000 Fx Fy F1 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 • A relatively small proportion of muscle contraction goes into turning the joint. • Most of the force of muscle contraction goes into compressing the joint, especially when its mechanical advantage is poor. Maximum Force vs Knee Angle - Isometric 7000 6000 Fx Fy F1 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 • When the muscle is at its greatest length (largest knee joint angle), it exerted substantially greater contractile force. • The combination of muscle length and mechanical advantage resulted in a relatively constant turning component (Fx) over the range of knee joint positions. Maximum Force vs Knee Angle - Isometric 7000 6000 Fx Fy F1 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 Experiments 2 and 3 – Measured and Calculated Isokinetic Parameters Maximum Isokinetic (15 deg/sec = 0.2618 rad/sec) Angle of Attachme nt of Knee Joint Muscle to Angle Shank (Theta 2) (Theta 1) (deg) (deg) 180 3.41 165 13.64 150 30 135 43.5 120 57.4 105 71.5 90 86.2 Muscle Length (OI) (m) 0.4207 0.4185 0.4133 0.4057 0.3953 0.3836 0.3708 Torque Applied Joint Force to Turning Applied to Muscle Cybex Force Cybex Arm Moment Arm (Fx) (Fc) Arm (m) (Nm) (N) (N) 0.00297 0.01179 52.989 1059.78 176.63 0.025 89.057 1781.14 296.85667 0.0344 95.615 1912.3 318.71667 0.04212 72.663 1453.26 242.21 0.0474 59.001 1180.02 196.67 0.0499 27.304 546.08 91.013333 Joint Compression Force (Fy) (N) 4367.25 3085.02 2015.16 929.38 384.82 36.27 Force of Muscle Contraction (F1) Power (N) (Nm/sec) 4494 3562.28 2778.1 1725 1244.3 547.28 13.87 23.32 25.03 19.02 15.45 7.15 Experiments 2 and 3 – Measured and Calculated Isokinetic Parameters (continued) Maximum Isokinetic (60 deg/sec = 1.0472 rad/sec) Angle of Attachm Knee ent of Joint Muscle Muscle Angle to Shank Length (Theta 2) (Theta 1) (OI) (deg) (deg) (m) 180 3.41 0.4207 165 13.64 0.4185 150 30 0.4133 135 43.5 0.4057 120 57.4 0.3953 105 71.5 0.3836 90 86.2 0.3708 Torque Joint Applied Joint Force Compres- Force of to Turning Applied sion Muscle Muscle Cybex Force to Cybex Force ContracMoment Arm (Fx) Arm (Fc) (Fy) tion (F1) Power Arm (m) (Nm) (N) (N) (N) (N) (Nm/sec) 0.00297 0.01179 69.657 1393.14 232.19 5740.99 5907.6 72.94 0.025 81.953 1639.06 273.177 2838.94 3278.12 85.82 0.0344 91.79 1835.8 305.967 1934.53 2666.94 96.12 0.04212 88.784 1775.68 295.947 1135.59 2107.75 92.97 0.0474 81.406 1628.12 271.353 544.76 1716.84 85.25 0.0499 71.843 1436.86 239.477 95.44 1440.03 75.23 Experiments 2 and 3 – Measured and Calculated Isometric Parameters (continued) Maximum Isokinetic (90 deg/sec = 1.5708 rad/sec) Angle of Attachment Knee Joint of Muscle to Shank Angle (Theta 2) (Theta 1) (deg) (deg) 3.41 180 13.64 165 30 150 43.5 135 57.4 120 71.5 105 86.2 90 Muscle Length (OI) (m) 0.4207 0.4185 0.4133 0.4057 0.3953 0.3836 0.3708 Torque Applied Joint Turning to Muscle Cybex Force (Fx) Moment Arm (N) Arm (m) (Nm) 0.00297 0.01179 75.668 1513.36 0.025 78.674 1573.48 0.0344 82.226 1644.52 0.04212 80.04 1600.8 0.0474 80.04 1600.8 0.0499 66.925 1338.5 Joint Compres- Force of Force Muscle sion Applied to ContracForce Cybex Power tion (F1) (Fy) Arm (Fc) (Nm/sec) (N) (N) (N) 252.2267 262.2467 274.0867 266.8 266.8 223.0833 6236.41 2725.35 1732.99 1023.77 535.61 88.9 6417.4 3146.96 2389.1 1900.2 1688 1341.4 118.86 123.58 129.16 125.73 125.73 105.13 Experiments 2 and 3 – Measured and Calculated Isokinetic Parameters (continued) Maximum Isokinetic (120 deg/sec = 2.0944 rad/sec) Angle of Torque Joint Attachment Applied Joint Force Compres- Force of Knee Joint of Muscle Muscle to Turning Applied to sion Muscle Angle to Shank Length Muscle Cybex Force Cybex Force Contrac(Theta 2) (Theta 1) (OI) Moment Arm (Fx) Arm (Fc) (Fy) tion (F1) Power (deg) (deg) (m) Arm (m) (Nm) (N) (N) (N) (N) (Nm/sec) 180 0.4207 0.00297 165 0.4185 0.01179 64.739 1294.78 215.7967 5335.65 5490.5 135.59 150 0.4133 0.025 74.849 1496.98 249.4967 2592.85 2993.96 156.76 135 0.4057 0.0344 79.221 1584.42 264.07 1669.63 2301.75 165.92 120 0.3953 0.04212 77.035 1540.7 256.7833 985.31 1828.82 161.34 105 0.3836 0.0474 72.663 1453.26 242.21 465.25 1532.45 152.19 90 0.3708 0.0499 63.099 1261.98 210.33 83.82 1264.76 132.15 Experiments 2 and 3 – Measured and Calculated Isokinetic Parameters (continued) Maximum Isokinetic (150 deg/sec = 2.6180) Angle of Attachme nt of Knee Joint Muscle to Angle Shank (Theta 2) (Theta 1) (deg) (deg) 180 3.41 165 13.64 150 30 135 43.5 120 57.4 105 71.5 90 86.2 Muscle Length (OI) (m) 0.4207 0.4185 0.4133 0.4057 0.3953 0.3836 0.3708 Torque Joint Applied Joint Force Compres- Force of to Turning Applied to sion Muscle Muscle Cybex Force Cybex Arm Force ContracMoment Arm (Fx) (Fc) (Fy) tion (F1) Power Arm (m) (Nm) (N) (N) (N) (N) (Nm/sec) 0.00297 0.01179 0.025 69.384 1387.68 231.28 2403.53 2775.36 181.65 0.0344 64.465 1289.3 214.88333 1358.64 1873.02 168.77 0.04212 55.722 1114.44 185.74 712.71 1322.85 145.88 0.0474 53.536 1070.72 178.45333 358.26 1129.07 140.16 0.0499 38.781 775.62 129.27 51.52 777.33 101.53 Experiments 2 and 3 – Measured and Calculated Isokinetic Parameters (continued) Maximum Isokinetic (180 deg/sec = 3.1416 rad/sec) Angle of Attachm Knee ent of Joint Muscle Muscle Angle to Shank Length (Theta 2) (Theta 1) (OI) (deg) (deg) (m) 180 3.41 0.4207 165 13.64 0.4185 150 30 0.4133 135 43.5 0.4057 120 57.4 0.3953 105 71.5 0.3836 90 86.2 0.3708 Torque Joint Applied Joint Force Compres- Force of to Turning Applied sion Muscle Muscle Cybex Force to Cybex Force ContracMoment Arm (Fx) Arm (Fc) (Fy) tion (F1) Power Arm (m) (Nm) (N) (N) (N) (N) (Nm/sec) 0.00297 0.01179 55.995 1119.9 186.65 4614.96 4748.9 175.91 0.025 64.739 1294.78 215.797 2242.62 2589.56 203.38 0.0344 64.465 1289.3 214.883 1358.63 1873 202.52 0.04212 61.46 1229.2 204.867 786.12 1459.1 193.08 0.0474 56.541 1130.82 188.47 378.35 1192.4 177.63 0.0499 48.891 977.82 162.97 64.95 980 153.6 What interpretation did you make of this data? Maximum Force vs Knee Angle - Isokinetic 7000 Fx - 15 deg/sec Fy - 15 deg/sec F1 - 15 deg/sec Fx - 90 deg/sec Fy - 90 deg/sec F1 - 90 deg/sec Fx - 180 deg/sec Fy - 180 deg/sec F1 - 180 deg/sec 6000 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 • The same pattern existed in the isokinetic contractions as was evident in these isometric contractions (see isometric graph). • A similar pattern is evident among these angular velocities. Maximum Force vs Knee Angle - Isokinetic 7000 Fx - 15 deg/sec Fy - 15 deg/sec F1 - 15 deg/sec Fx - 90 deg/sec Fy - 90 deg/sec F1 - 90 deg/sec Fx - 180 deg/sec Fy - 180 deg/sec F1 - 180 deg/sec 6000 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 • An inverse relationship between force of isokinetic contraction and angular velocity was expected. This was not evident at the 165 degree knee angle for these angular velocities, but was evident in the middle knee angles. Maximum Force vs Knee Angle - Isokinetic 7000 Fx - 15 deg/sec Fy - 15 deg/sec F1 - 15 deg/sec Fx - 90 deg/sec Fy - 90 deg/sec F1 - 90 deg/sec Fx - 180 deg/sec Fy - 180 deg/sec F1 - 180 deg/sec 6000 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 What interpretation did you make of this data? Maximum Force vs Knee Angle 7000 Fx - 60 deg/sed Fy - 60 deg/sec F1 - 60 deg/sec Fx - 120 deg/sec Fy - 120 deg/sec F1 - 120 deg/sec Fx - 150 deg/sec Fy - 150 deg/sec F1 - 150 deg/sec 6000 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 • The same pattern existed in the isokinetic contractions as was evident in these isometric contractions (see isometric graph). • A similar pattern is evident among these angular velocities. Maximum Force vs Knee Angle 7000 Fx - 60 deg/sed Fy - 60 deg/sec F1 - 60 deg/sec Fx - 120 deg/sec Fy - 120 deg/sec F1 - 120 deg/sec Fx - 150 deg/sec Fy - 150 deg/sec F1 - 150 deg/sec 6000 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 • An inverse relationship between force of isokinetic contraction and angular velocity was expected. This was evident for these angular velocities. Maximum Force vs Knee Angle 7000 Fx - 60 deg/sed Fy - 60 deg/sec F1 - 60 deg/sec Fx - 120 deg/sec Fy - 120 deg/sec F1 - 120 deg/sec Fx - 150 deg/sec Fy - 150 deg/sec F1 - 150 deg/sec 6000 Force (N) 5000 4000 3000 2000 1000 0 180 165 150 135 Knee Angle (deg) 120 105 90 What interpretation did you make of this data? Maximum Force of Hamstrings vs Muscle Length 7000 6000 Force (N) 5000 F1 F1 F1 F1 F1 F1 F1 - Isometric 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 4000 3000 2000 1000 0 0.37 0.375 0.38 0.385 0.39 0.395 Muscle Length (m) 0.4 0.405 0.41 0.415 0.42 • A dynamic relationship existed between muscle length and its ability to exert maximum contractile force for all angular velocities tested. Maximum Force of Hamstrings vs Muscle Length 7000 6000 Force (N) 5000 F1 F1 F1 F1 F1 F1 F1 - Isometric 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 4000 3000 2000 1000 0 0.37 0.375 0.38 0.385 0.39 0.395 Muscle Length (m) 0.4 0.405 0.41 0.415 0.42 • As muscle length increased, there was an increase in its ability to exert force for all angular velocities. This relationship was relatively constant between 0.37 and 0.4 meters, but appeared curvilinear and increased substantially after achieving a muscle length of 0.4 meters. Maximum Force of Hamstrings vs Muscle Length 7000 6000 Force (N) 5000 F1 F1 F1 F1 F1 F1 F1 - Isometric 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 4000 3000 2000 1000 0 0.37 0.375 0.38 0.385 0.39 0.395 Muscle Length (m) 0.4 0.405 0.41 0.415 0.42 • The dynamic relationship between muscle length and its ability to exert maximum force of contraction is likely to be related to the a) overlap of actin and myosin myofilaments in the sarcomeres and b) series elastic component of skeletal muscle when length is greater than “resting” length. Maximum Force of Hamstrings vs Muscle Length 7000 6000 Force (N) 5000 F1 F1 F1 F1 F1 F1 F1 - Isometric 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 4000 3000 2000 1000 0 0.37 0.375 0.38 0.385 0.39 0.395 Muscle Length (m) 0.4 0.405 0.41 0.415 0.42 What interpretation did you make of this data? Maximum Force of Hamstring Contraction vs Muscle Moment Arm 7000 F1 F1 F1 F1 F1 F1 F1 - 6000 Force (N) 5000 Isometric 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 4000 3000 2000 1000 0 0.01 0.015 0.02 0.025 0.03 0.035 Muscle Moment Arm (m) 0.04 0.045 0.05 0.055 • For all angular velocities (including the isometric condition), there was an inverse relationship between muscle moment arm and the muscle’s ability to exert maximum force of contraction. Maximum Force of Hamstring Contraction vs Muscle Moment Arm 7000 F1 F1 F1 F1 F1 F1 F1 - 6000 Force (N) 5000 Isometric 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 4000 3000 2000 1000 0 0.01 0.015 0.02 0.025 0.03 0.035 Muscle Moment Arm (m) 0.04 0.045 0.05 0.055 • The mechanical advantage of an increased muscle moment arm was not able to compensate for a corresponding decrease in maximum force of muscle contraction. Maximum Force of Hamstring Contraction vs Muscle Moment Arm 7000 F1 F1 F1 F1 F1 F1 F1 - 6000 Force (N) 5000 Isometric 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 4000 3000 2000 1000 0 0.01 0.015 0.02 0.025 0.03 0.035 Muscle Moment Arm (m) 0.04 0.045 0.05 0.055 What interpretation did you make of this data? Hamstring Moment Arm vs Muscle Length 0.43 Muscle Length (m) 0.42 0.41 0.4 0.39 0.38 0.37 0 0.01 0.02 0.03 Muscle Moment Arm (m) 0.04 0.05 0.06 • A curvilinear relationship existed between muscle length and muscle moment arm. • As the muscle moment arm increased, the muscle length decreased. Hamstring Moment Arm vs Muscle Length 0.43 Muscle Length (m) 0.42 0.41 0.4 0.39 0.38 0.37 0 0.01 0.02 0.03 Muscle Moment Arm (m) 0.04 0.05 0.06 • There appears to a compensatory mechanism in place. The mechanical advantage associated with a longer muscle moment arms is detracted by the loss in ability of the muscle to exert force due to decreases in its length. The opposite is also evident. Hamstring Moment Arm vs Muscle Length 0.43 Muscle Length (m) 0.42 0.41 0.4 0.39 0.38 0.37 0 0.01 0.02 0.03 Muscle Moment Arm (m) 0.04 0.05 0.06 What interpretation did you make of this data? Maximum Isokinetic Torque vs Knee Angle 100 80 60 (Fx)(AI) -15 deg/sec (Fc)(AC) -15 deg/sec Torque (Nm) 40 (Fx)(AI) - 60 deg/sec (Fc)(AC) - 60 deg/sec 20 (Fx)(AI) - 90 deg/sec (Fc)(AC) = 90 deg/sec 0 (Fx)(AI) - 120 deg/sec (Fc)(AC) - 120 deg/sec -20 (Fx)(AI) - 150 deg/sec (Fc)(AC) - 150 deg/sec -40 (Fx)(AI) - 180 deg/sec (Fc)(AC) - 180 deg/sec -60 -80 -100 180 165 150 135 Knee Angle (deg) 120 105 90 • For all angular velocities, the torque experienced by the arm of the isokinetic dynamometer was equal and opposite to the torque experienced by the subject’s leg. This is to be expected since the angular velocity of the isokinetic dynamometer is constant for all settings. Maximum Isokinetic Torque vs Knee Angle 100 80 60 (Fx)(AI) -15 deg/sec (Fc)(AC) -15 deg/sec Torque (Nm) 40 (Fx)(AI) - 60 deg/sec (Fc)(AC) - 60 deg/sec 20 (Fx)(AI) - 90 deg/sec (Fc)(AC) = 90 deg/sec 0 (Fx)(AI) - 120 deg/sec (Fc)(AC) - 120 deg/sec -20 (Fx)(AI) - 150 deg/sec (Fc)(AC) - 150 deg/sec -40 (Fx)(AI) - 180 deg/sec (Fc)(AC) - 180 deg/sec -60 -80 -100 180 165 150 135 Knee Angle (deg) 120 105 90 What interpretation did you make of this data? Power vs Angular Velocity for Selected Knee Angles 210 180 Power (Nm/sec) 150 120 90 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 60 30 0 180 165 150 135 Knee Angle (deg) 120 105 90 • Power is the product of torque and angular velocity. • It was previously interpreted that there was a general inverse relationship between angular velocity and the ability of muscle to generate maximum torque. Power vs Angular Velocity for Selected Knee Angles 210 180 Power (Nm/sec) 150 120 90 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 60 30 0 180 165 150 135 Knee Angle (deg) 120 105 90 • A direct relationship between the muscle’s ability to generate power and angular velocity is evident. • Of the two factors in determining power (torque and angular velocity), angular velocity appears to dominate. Power vs Angular Velocity for Selected Knee Angles 210 180 Power (Nm/sec) 150 120 90 15 deg/sec 60 deg/sec 90 deg/sec 120 deg/sec 150 deg/sec 180 deg/sec 60 30 0 180 165 150 135 Knee Angle (deg) 120 105 90 What effects could internal anatomical differences in the locations of muscle origins and insertions and bone (lever) lengths have on internally measured forces and torques? In other words, what effects would changes in AI, AB, and OB have on internally measured forces and torques? How would these effects manifest themselves in external measures of forces and torques? (See next slide for model figure.) Influence of Changes in AI, AB, and OB? Other Changes? Definition of Variables F1 – maximum force of hamstring contraction Fc – maximum force applied at pad on mechanical arm Fx –vector component of F1 perpendicular to rigid shaft of shank; turning component of F1 at collective insertion (I) of hamstrings Fy – vector component of F1 parallel to rigid shaft of shank; joint compressive component of F1 at collective insertion (I) of hamstrings 1 – angle between shaft of shank and F1 at I 2 – angle at knee joint center (A) formed by shafts of the thigh and shank AI – distance between collective insertion of hamstrings (I) and knee joint center (A); AI = _______ meters AC – distance from center of cuff to knee joint center (A); AC = _______ meters AB – horizontal distance from knee joint center (A) to a point B located directly above the collective origin (O) of the hamstrings; AB = _______ meters OI – hamstring muscle length OB – distance from O to B; OB = _______ meters OP – distance from O to point P on shaft of shank, OP is parallel to AB AS – perpendicular line from A to O AM – a line from point A that intersects OI, forming a right angle; moment arm of F1 (not drawn on figure) Several assumptions have been provided about this Hypothetical Model. List at least five additional assumptions which cause this model to be hypothetical as opposed to an actual model. For each of these assumptions, conjecture as to its potential influence on the results of the experiment (i.e., major or minor) and why you think this way. Additional Assumptions 1. Two-dimensional versus threedimensional model 2. Use of cadaver data 3. Other? Thanks Miguel!!! 3. Force Platform Lecture 4. Force Platform Lab Laboratory Experiments: Measurement and Interpretation of Ground Reaction Forces, Center of Pressure, and Impulse-Momentum Relationships