Download No Slide Title

Document related concepts
no text concepts found
Transcript
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
MURI
UC Berkeley
Low-Level
Control
Low-Level
Control
Biomimetic
Robots
High-Level
Control
MURI
Fabrication
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
E
D
A
MURI
UC Berkeley
Low-Level
Control
Comparison with Artificial
Muscles
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Low-Level
Control
High-Level
Control
MURI
New Results on Measurements of
Muscles
Gecko foot adhesion
Fabrication
Discussion of low level
mechanism
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
MURI Year Two Meeting2000
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Professor Robert J. Full
Daniel Dudek
Dr. Kenneth Meijer
Basic properties of natural
muscle
Low-Level
Control
High-Level
Control
MURI
First direct comparison of natural
muscle to artificial muscle
Fabrication
Diverse roles of muscles
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Manufactured Legs
Low-Level
Control
SDM permits embedded
sensors and actuators
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
What properties should legs
possess? Why?
What properties should the
actuators possess?
How many actuators should
there be?
How should the actuators be
controlled?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
MURI Interactions
Manipulation
Harvard
D
A
L
UC Berkeley
Low-Level
Control
Motor Control
& Learning
Johns Hopkins
E
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Rapid Prototyping
Stanford
MURI
Sensors / MEMS
Stanford
Muscles and
Locomotion
UC Berkeley
Robot & Leg
Mechanisms
UC Berkeley
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
Interdisciplinary
Collaboration
MURI
Low-Level
Control
Proteomics
Metabolic Pathways
Biomaterials
Actin/Myosin
BioMechanics
POLY- P
Ion Channels
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
CPG
Neurosciences
Ion Channels
Biointerfaces
General Biological Principles
Novel
Hypotheses &
Devices
Biological
Inspiration
General Robot Design Principles
Nanotechnology
Mat. Science
Mechanics Control Theory
Constitutive Relations Kinematics
Dynamics
Stability
SDM
Circuit Theory
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Road Map
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
1. What muscles can do.
(Traditional characterization)
2. What muscles do in nature.
(Inputs values from behavior)
3. Compare natural muscles to
artificial muscles.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Road Map
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
1. What muscles can do.
(Traditional characterization)
2. What muscles do in nature.
(Inputs values from behavior)
3. Compare natural muscles to
artificial muscles.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Muscle Model
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Active force generating element
Force
Passive visco-elastic element
Activation
Force
Time
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Activation
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Human
Stimulation
(EMG)
Muscle
Force
Cockroach
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
Activation
MURI
Low-Level
Control
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Time to Peak Force: 0.004 - 0.79 sec; 200-fold variation
Time to 50% Relaxation: 0.009 - 1.1 sec; 100-fold variation
600
7 - 803 kN/m2
or kPa
100-fold
variation
Insect leg muscle
500
Force (mN)
Maximum
isometric
stress
400
5
4
3
300
2
200
1
100
0
0
20
40
60
Time (msec)
80
100
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Muscle Model
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Active force generating element
Force
Passive visco-elastic element
Activation
Length
Force
Force
Time
Length
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Force-Length Curve
A
L
Insect leg muscle
20
Stress N/cm2
Animals tend
to operate on
the Ascending
or Plateau
region.
D
UC Berkeley
Low-Level
Control
Maximum
isometric
stress varies
with Strain
E
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
15
10
5
0
-0.2
-0.1
0
0.1
0.2
0.3
Strain
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Force-Length Variation
100
Low-Level
Control
80
100-fold
variation
Relative Stress (%)
Maximum
Strain
varies from
2 - 200%
60
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Bee
Flight
Frog
40
20
100
80
60
Locust
Flight
Leech
Crayfish
Fly
larvae
40
20
100
80
60
40
R. J. Full
Handbook of
Comparative Physiology
20
0
-0.4
-0.2 0 0.2
0.4
-0.4
Strain
-0.2 0 0.2
0.4
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
POLY- P
Muscle Model
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Active force generating element
Force
Passive visco-elastic element
Activation
Length
Force
Force
Force
Time
Velocity
Length
Velocity
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Force-Velocity Curve
60-fold
variation
Normalized Force (F/Fo)
0.3 - 20 l/sec
D
A
L
UC Berkeley
Low-Level
Control
Maximum
Contraction
Velocity
E
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
1
Insect leg muscle
0.8
0.6
0.4
0.2
0
0
1
2
3
4
5
6
Relative Velocity (L s-1)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Force-Velocity Curve
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Trade-off
between
Force and
Velocity
Similar
Shape of
Curve
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Low-Level
Control
Instantaneous Muscle
Power
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Maximum Instantaneous Power Output
at 1/3 Maximum Contraction Velocity
Power = Force X Velocity
Muscle
Force
Power
Muscle Velocity
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
Instantaneous Muscle Power
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Maximum Instantaneous Power Output
> 500 W/kg muscle
Species
Vmax
(Lengths/sec)
Rat (EDL)
Mouse (soleus)
Lizard (iliofib)
Frog (iliofib)
Locust (flight)
Katydid (wing)
13
7
20
9
5
16
Fo
Pmax
T
(kN/m2 )
(W/kg)
(°C)
209
198
205
396
363
118
323
133
505
431
276
326
35
35
44
20
30
35
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Road Map
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
1. What muscles can do.
(Traditional characterization)
2. What muscles do in nature.
(Inputs values from behavior)
3. Compare natural muscles to
artificial muscles.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
In Vivo Activation
D
A
L
UC Berkeley
Low-Level
Control
Muscles
Activated
Rhythmically
at a Given
Phase
E
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
CAT
FLEXORS
EXTENSORS
GROUND CONTACT
PERIOD
ONE SECOND
COCKROACH
COXA
FLEXORS
EXTENSORS
FEMUR
200 MSEC
(Pearson, 1976)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
Cycle Frequency
MURI
E
D
1000
Mosquitoes
Flies
Flower flies
Fliers
Bees, Wasps
Aphids,
White flies
100
Crane flies
Beetles
Dragonflies
10
L
UC Berkeley
Low-Level
Control
Hz
A
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Sphinx moths
Frequency Butterflies
<1 to 1000 Hz
Swimmers
Saturnid moths
Runners
Invertebrates
1
Full, 1997 Handbook of Comparative Physiology
10 m g
0.1 mg
1 mg
10 mg
0.1 g
Body mass
1g
10 g
0.1 kg
1 kg
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Muscle Lever
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Control
Stimulation
Servo and
Force
Transducer
Stimulation
- pattern
- magnitude
- phase
Strain
- pattern
- magnitude
Frequency
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Workloop Technique
Low-Level
Control
Lever
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
QuickTime™ and a
Cinepak decompressor
are needed to see this picture.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Workloop Technique
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Strain
Stress
t
t
t
1 2
Work Output during
Shortening
t
Stress
t
3
3
t
1
Net Work
per Cycle
Work Input to
Lengthen
t
2
2
t
1
t
t
3
1
t
3
t
1
Strain
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
Muscles as Motors
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Power Generation 9-284 W/kg
Scallop Swimming Muscle
t1
t2
t3
t4
Bird Flight Muscle
t5
t2
t3
Force
Force
t4
t1
t5
Length
Length
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Low-Level
Control
Workloop Shape
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Shape depends on Frequency
Rectangular
Stress
POLY- P
Triangular
Ellipsoid
Low
Intermediate
High
<30 Hz
30-60 Hz
>60Hz
Strain
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Power vs Frequency
E
D
Power
constant
L
UC Berkeley
Low-Level
Control
Work per
cycle
decreases
with
Frequency
A
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
1000
Power (W/kg)
100
10
Scallop
1
Work per cycle
(J/kg)
0.1
1
10
Bee
100
1000
Frequency (Hz)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
Stress, Strain vs Frequency
1000
Stress and
Strain
decrease
with
Frequency
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
2
Stress (kN/m )
100
Strain (%)
10
1
Strain rate (L/sec)
0.1
1
10
100
1000
Frequency (Hz)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Road Map
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
1. What muscles can do.
(Traditional characterization)
2. What muscles do in nature.
(Inputs values from behavior)
3. Compare natural muscles to
artificial muscles.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Low-Level
Control
Artificial Muscle?
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
First Direct
Comparison
by K. Meijer
Collaboration
S. V. Shastri
R. Kornbluh
R. Pelrine
Acrylic Dielectric
Elastomer
Artificial Butterfly
SRI research engineer Roy Kornbluh
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
Dielectric Elastomer Actuators
Soft ElectroActive
Polymers (EAP)
Polymer film is
sandwiched between
compliant electrodes
and acts as a
dielectric (insulator).
Incompressible
polymer gets thicker
and contracts in area
when a voltage is
turned off.
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Compliant electrodes
(on top and bottom
surfaces)
UC Berkeley
V
Voltage on
Polymer film
Voltage off
Basic
functional element
QuickTime™ and a
decompressor
are needed to see this picture.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
Activation
MURI
E
D
Acrylic dielectric elastomer
Insect leg muscle
Force (mN)
Force (mN)
500
1 kV
2 kV
1100
400
4
5
6
2
200
3 kV
1000
3
300
1
900
4 kV
800
5 kV
700
100
0
L
EAP has Rapid Kinetics
1200
0
A
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
600
POLY- P
20
40
60
Time (msec)
80
100
600
0
stimulation
20
40
60
80
100
Time (msec)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
Force-Length Curve
MURI
Stress N/cm2
20
D
A
L
UC Berkeley
EAP has a linear Force-Length Curve
Insect leg muscle
Acrylic dielectric elastomer
200
Stress N/cm2
Low-Level
Control
E
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
180
15
160
10
140
5
0
120
100
-0.2
-0.1
0
0.1
Strain
0.2
0.3
0
0.05
0.1
0.15
0.2
Strain
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Acrylic Dielectric Elastomer
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Same Apparatus used to test Natural Muscle
Force
Dlength
46.2 mg at a 1 N pre-tension
Dimensions of active part of the actuator (l x w x h)
17.88 x 15.88 x 0.07 mm.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Power Output
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
EAP Produced and Absorbed Energy
Stress (Ncm-2)
Stress (Ncm-2)
150
150
100
100
5%
50
0
0
100
Locomotion cycle %
50
0
-2.5
0
2.5
Strain %
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
EAP Power Output
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
As in
Muscle,
EAPs only
Produce
Power over
a Particular
Range of
Strains and
Stimulation
Phases
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Work vs Frequency
Activation
not
Maximal
D
A
L
UC Berkeley
Low-Level
Control
Work per
Cycle
Lower
than mean
E
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
1000
Work per cycle
(J/kg)
100
10
EAP
1
0.1
1
10
100
1000
Frequency (Hz)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
Stress, Strain vs Frequency
1000
Stress
higher and
Strain
lower than
mean.
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
EAP
UC Berkeley
2
Stress (kN/m )
100
10
EAP
1
0.1
1
10
Strain (%)
100
1000
Frequency (Hz)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Power Output Comparison
UC Berkeley
1000
Rat
Lizard
100
Bee
Power
output
(W/kg)
EAP
10
Crab
EAP within Range
of Natural Muscle
1
1
10
100
1000
Frequency (Hz)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Conclusions
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
1. Muscles have a broad range
of potential function.
2. Matching natural inputs
required to reveal function
3. Can not refute EAP as
artifical muscle
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
MURI Year Two Meeting2000
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Professor Robert J. Full
Dr. Anna Ahn
Dr. Kenneth Meijer
Basic properties of natural
muscle
Low-Level
Control
High-Level
Control
MURI
First direct comparison of natural
muscle to artificial muscle
Fabrication
Diverse roles of muscles
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Multiple Muscle Systems
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Complex,
Redundant?
or
Diverse
Functional
Capacity?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Questions
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Why are there so many muscles operating
at a single joint?
Are all muscles created equal?
Can differences in function be explained
by neural activation alone?
Can differences in function be explained
by traditional characterizations?
Are muscles mainly power generators?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Low-Level
Control
Hypotheses
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Muscles of the same anatomical group
activated at the same time
will function similarly.
Two leg extensors acting at the same joint
activated during leg extension will
function similarly and both produce power.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
Two extensor muscles
innervated by a single motor
neuron
muscle 178
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
coxa-femur
joint
muscle 179
stance phase
joint extension
muscle shortening
Anna Ahn
small joint angle
long muscle lengths
large joint angle
short muscle lengths
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Hypothesis: Muscles
stimulated by the same motor
neuron function similarly.
UC Berkeley
NEURAL CONTROL
Stimulation patterns the same?
INTRINSIC MUSCLE PROPERTIES
Force-Length properties similar?
Force-Velocity properties similar?
Twitch kinetics similar?
Shortening deactivation similar?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Stimulate motor neuron, while
measuring EMG’s from 178 and 179.
UC Berkeley
10
5
178 follows 179
178-179
EMG delay 0
(ms)
-5
-10
178 precedes 179
0
150
100
50
Stimulation frequency (pps)
(mean ± S.D.)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Hypothesis: Muscles
stimulated by the same motor
neuron function similarly.
UC Berkeley
NEURAL CONTROL
Stimulation patterns the same? YES
INTRINSIC MUSCLE PROPERTIES
Force-Length properties similar?
Force-Velocity properties similar?
Twitch kinetics similar?
Shortening deactivation similar?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Similar force-length
properties
UC Berkeley
178 179
1
0.8
Norm. 0.6
Force
(F/Fo) 0.4
ranges of strains used
during running
0.2
0
-30 -20 -10
0 10 20
Strain (%)
30
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Hypothesis: Muscles
stimulated by the same motor
neuron function similarly.
UC Berkeley
NEURAL CONTROL
Stimulation patterns the same? YES
INTRINSIC MUSCLE PROPERTIES
Force-Length properties similar? YES
Force-Velocity properties similar?
Twitch kinetics similar?
Shortening deactivation similar?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
Similar force-velocity
properties
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
178 179
1
0.8
Normalized
Force 0.6
(F/Fo) 0.4
max. in vivo
velocity during running
0.2
0
0
1 2 3 4 5 6
Relative Velocity (L s-1)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Hypothesis: Muscles
stimulated by the same motor
neuron function similarly.
UC Berkeley
NEURAL CONTROL
Stimulation patterns the same? YES
INTRINSIC MUSCLE PROPERTIES
Force-Length properties similar? YES
Force-Velocity properties similar? YES
Twitch kinetics similar?
Shortening deactivation similar?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Similar isometric contraction
kinetics
20
15
Stress 10
(N cm-2) 5
0
-5
100
Time 75
(ms) 50
25
0
UC Berkeley
178 179
0
50
100
150 Time (ms)
Time to
Time to Time to
90%
50%
peak force
relaxation relaxation
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Hypothesis: Muscles
stimulated by the same motor
neuron function similarly.
UC Berkeley
NEURAL CONTROL
Stimulation patterns the same? YES
INTRINSIC MUSCLE PROPERTIES
Force-Length properties similar? YES
Force-Velocity properties similar? YES
Twitch kinetics similar? YES
Shortening deactivation similar?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Similar shortening
deactivation
UC Berkeley
178 179
80
60
Force
depression 40
(%)
20
0
0
2
4
6
Strain (%)
8
(mean ± S.D.)
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Hypothesis: Muscles
stimulated by the same motor
neuron function similarly.
UC Berkeley
NEURAL CONTROL
Stimulation patterns the same?
INTRINSIC MUSCLE PROPERTIES
Force-Length properties similar?
Force-Velocity properties similar?
Twitch kinetics similar?
Shortening deactivation similar? YES
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Low-Level
Control
POLY- P
Muscle Power during
Running
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Two extensor muscles at same joint stimulated
by the SAME neuron have different function.
Stiffening Element
3 W kg-2
6
Damper or brake
-19 W kg-2
4
Stress 2
(N cm-2)
0
-2
-10
-5
0
Strain
5
10
= stimulation
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
What’s different?
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
Active force during shortening
178
179
stance
UC Berkeley
stance
= stimulation
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Low-Level
Control
Conclusions
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
1. Muscle function cannot be predicted from
neural activity.
Muscles innervated by the same motor neuron
do NOT necessarily function similarly.
2. Muscles of the same anatomical group (178 and
179) can have many similar intrinsic muscle
properties, but still function differently.
3. History-dependent properties may play an
important role in determining muscle function.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
MURI
Low-Level
Control
Implications for
Robotics
POLY- P
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
1. Direct copying of the musculoskeletal system is
likely to fail.
Muscle have diverse roles that can only be revealed by
extensive experimentation.
2. Control and energy management may be attained
using actuators with different properties rather
than sending out complex control signals.
3. EAPs with muscle-like properties are available.
More direct comparison are needed. More emphasis
on function in devices required.
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
POLY- P
MURI
Robotic Applications of EAPs
E
D
A
L
N Y
N
E
O
R
E N
IM C
FO RG A
A OM
E MI
L
R
O
T
C
MA I
TI
S
C
N
S
O
C
LAB
N
E
UC Berkeley
Low-Level
Control
Leg actuator based on a
stretched film actuator
Second DOF
Modular design composed of individual
stretched film actuators integrated into a
6-legged walking robot
CAD representation of the robot
including a second degree of
freedom
Biomimetic Robots - ONR Site5/24/2017
Visit - August 9, 2000
Related documents