Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E MURI UC Berkeley Low-Level Control Low-Level Control Biomimetic Robots High-Level Control MURI Fabrication Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P E D A MURI UC Berkeley Low-Level Control Comparison with Artificial Muscles L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Low-Level Control High-Level Control MURI New Results on Measurements of Muscles Gecko foot adhesion Fabrication Discussion of low level mechanism Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control MURI Year Two Meeting2000 E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Professor Robert J. Full Daniel Dudek Dr. Kenneth Meijer Basic properties of natural muscle Low-Level Control High-Level Control MURI First direct comparison of natural muscle to artificial muscle Fabrication Diverse roles of muscles Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Manufactured Legs Low-Level Control SDM permits embedded sensors and actuators E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley What properties should legs possess? Why? What properties should the actuators possess? How many actuators should there be? How should the actuators be controlled? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI MURI Interactions Manipulation Harvard D A L UC Berkeley Low-Level Control Motor Control & Learning Johns Hopkins E N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Rapid Prototyping Stanford MURI Sensors / MEMS Stanford Muscles and Locomotion UC Berkeley Robot & Leg Mechanisms UC Berkeley Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 Interdisciplinary Collaboration MURI Low-Level Control Proteomics Metabolic Pathways Biomaterials Actin/Myosin BioMechanics POLY- P Ion Channels E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley CPG Neurosciences Ion Channels Biointerfaces General Biological Principles Novel Hypotheses & Devices Biological Inspiration General Robot Design Principles Nanotechnology Mat. Science Mechanics Control Theory Constitutive Relations Kinematics Dynamics Stability SDM Circuit Theory Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Road Map POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control 1. What muscles can do. (Traditional characterization) 2. What muscles do in nature. (Inputs values from behavior) 3. Compare natural muscles to artificial muscles. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Road Map POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control 1. What muscles can do. (Traditional characterization) 2. What muscles do in nature. (Inputs values from behavior) 3. Compare natural muscles to artificial muscles. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Muscle Model POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Active force generating element Force Passive visco-elastic element Activation Force Time Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Activation POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Human Stimulation (EMG) Muscle Force Cockroach Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 Activation MURI Low-Level Control POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Time to Peak Force: 0.004 - 0.79 sec; 200-fold variation Time to 50% Relaxation: 0.009 - 1.1 sec; 100-fold variation 600 7 - 803 kN/m2 or kPa 100-fold variation Insect leg muscle 500 Force (mN) Maximum isometric stress 400 5 4 3 300 2 200 1 100 0 0 20 40 60 Time (msec) 80 100 Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Muscle Model POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Active force generating element Force Passive visco-elastic element Activation Length Force Force Time Length Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Force-Length Curve A L Insect leg muscle 20 Stress N/cm2 Animals tend to operate on the Ascending or Plateau region. D UC Berkeley Low-Level Control Maximum isometric stress varies with Strain E N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E 15 10 5 0 -0.2 -0.1 0 0.1 0.2 0.3 Strain Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Force-Length Variation 100 Low-Level Control 80 100-fold variation Relative Stress (%) Maximum Strain varies from 2 - 200% 60 E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Bee Flight Frog 40 20 100 80 60 Locust Flight Leech Crayfish Fly larvae 40 20 100 80 60 40 R. J. Full Handbook of Comparative Physiology 20 0 -0.4 -0.2 0 0.2 0.4 -0.4 Strain -0.2 0 0.2 0.4 Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI POLY- P Muscle Model E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Active force generating element Force Passive visco-elastic element Activation Length Force Force Force Time Velocity Length Velocity Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Force-Velocity Curve 60-fold variation Normalized Force (F/Fo) 0.3 - 20 l/sec D A L UC Berkeley Low-Level Control Maximum Contraction Velocity E N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E 1 Insect leg muscle 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 Relative Velocity (L s-1) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Force-Velocity Curve Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Trade-off between Force and Velocity Similar Shape of Curve Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Low-Level Control Instantaneous Muscle Power POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Maximum Instantaneous Power Output at 1/3 Maximum Contraction Velocity Power = Force X Velocity Muscle Force Power Muscle Velocity Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control Instantaneous Muscle Power E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Maximum Instantaneous Power Output > 500 W/kg muscle Species Vmax (Lengths/sec) Rat (EDL) Mouse (soleus) Lizard (iliofib) Frog (iliofib) Locust (flight) Katydid (wing) 13 7 20 9 5 16 Fo Pmax T (kN/m2 ) (W/kg) (°C) 209 198 205 396 363 118 323 133 505 431 276 326 35 35 44 20 30 35 Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Road Map POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control 1. What muscles can do. (Traditional characterization) 2. What muscles do in nature. (Inputs values from behavior) 3. Compare natural muscles to artificial muscles. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI In Vivo Activation D A L UC Berkeley Low-Level Control Muscles Activated Rhythmically at a Given Phase E N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E CAT FLEXORS EXTENSORS GROUND CONTACT PERIOD ONE SECOND COCKROACH COXA FLEXORS EXTENSORS FEMUR 200 MSEC (Pearson, 1976) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P Cycle Frequency MURI E D 1000 Mosquitoes Flies Flower flies Fliers Bees, Wasps Aphids, White flies 100 Crane flies Beetles Dragonflies 10 L UC Berkeley Low-Level Control Hz A N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Sphinx moths Frequency Butterflies <1 to 1000 Hz Swimmers Saturnid moths Runners Invertebrates 1 Full, 1997 Handbook of Comparative Physiology 10 m g 0.1 mg 1 mg 10 mg 0.1 g Body mass 1g 10 g 0.1 kg 1 kg Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Muscle Lever POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Control Stimulation Servo and Force Transducer Stimulation - pattern - magnitude - phase Strain - pattern - magnitude Frequency Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Workloop Technique Low-Level Control Lever E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley QuickTime™ and a Cinepak decompressor are needed to see this picture. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Workloop Technique E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Strain Stress t t t 1 2 Work Output during Shortening t Stress t 3 3 t 1 Net Work per Cycle Work Input to Lengthen t 2 2 t 1 t t 3 1 t 3 t 1 Strain Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P Muscles as Motors MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Power Generation 9-284 W/kg Scallop Swimming Muscle t1 t2 t3 t4 Bird Flight Muscle t5 t2 t3 Force Force t4 t1 t5 Length Length Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Low-Level Control Workloop Shape E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Shape depends on Frequency Rectangular Stress POLY- P Triangular Ellipsoid Low Intermediate High <30 Hz 30-60 Hz >60Hz Strain Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Power vs Frequency E D Power constant L UC Berkeley Low-Level Control Work per cycle decreases with Frequency A N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E 1000 Power (W/kg) 100 10 Scallop 1 Work per cycle (J/kg) 0.1 1 10 Bee 100 1000 Frequency (Hz) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control Stress, Strain vs Frequency 1000 Stress and Strain decrease with Frequency E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley 2 Stress (kN/m ) 100 Strain (%) 10 1 Strain rate (L/sec) 0.1 1 10 100 1000 Frequency (Hz) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Road Map POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control 1. What muscles can do. (Traditional characterization) 2. What muscles do in nature. (Inputs values from behavior) 3. Compare natural muscles to artificial muscles. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Low-Level Control Artificial Muscle? POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley First Direct Comparison by K. Meijer Collaboration S. V. Shastri R. Kornbluh R. Pelrine Acrylic Dielectric Elastomer Artificial Butterfly SRI research engineer Roy Kornbluh Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control Dielectric Elastomer Actuators Soft ElectroActive Polymers (EAP) Polymer film is sandwiched between compliant electrodes and acts as a dielectric (insulator). Incompressible polymer gets thicker and contracts in area when a voltage is turned off. E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Compliant electrodes (on top and bottom surfaces) UC Berkeley V Voltage on Polymer film Voltage off Basic functional element QuickTime™ and a decompressor are needed to see this picture. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 Activation MURI E D Acrylic dielectric elastomer Insect leg muscle Force (mN) Force (mN) 500 1 kV 2 kV 1100 400 4 5 6 2 200 3 kV 1000 3 300 1 900 4 kV 800 5 kV 700 100 0 L EAP has Rapid Kinetics 1200 0 A N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control 600 POLY- P 20 40 60 Time (msec) 80 100 600 0 stimulation 20 40 60 80 100 Time (msec) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P Force-Length Curve MURI Stress N/cm2 20 D A L UC Berkeley EAP has a linear Force-Length Curve Insect leg muscle Acrylic dielectric elastomer 200 Stress N/cm2 Low-Level Control E N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E 180 15 160 10 140 5 0 120 100 -0.2 -0.1 0 0.1 Strain 0.2 0.3 0 0.05 0.1 0.15 0.2 Strain Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Acrylic Dielectric Elastomer Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Same Apparatus used to test Natural Muscle Force Dlength 46.2 mg at a 1 N pre-tension Dimensions of active part of the actuator (l x w x h) 17.88 x 15.88 x 0.07 mm. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Power Output POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control EAP Produced and Absorbed Energy Stress (Ncm-2) Stress (Ncm-2) 150 150 100 100 5% 50 0 0 100 Locomotion cycle % 50 0 -2.5 0 2.5 Strain % Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI EAP Power Output Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley As in Muscle, EAPs only Produce Power over a Particular Range of Strains and Stimulation Phases Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Work vs Frequency Activation not Maximal D A L UC Berkeley Low-Level Control Work per Cycle Lower than mean E N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E 1000 Work per cycle (J/kg) 100 10 EAP 1 0.1 1 10 100 1000 Frequency (Hz) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E Stress, Strain vs Frequency 1000 Stress higher and Strain lower than mean. D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E EAP UC Berkeley 2 Stress (kN/m ) 100 10 EAP 1 0.1 1 10 Strain (%) 100 1000 Frequency (Hz) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Power Output Comparison UC Berkeley 1000 Rat Lizard 100 Bee Power output (W/kg) EAP 10 Crab EAP within Range of Natural Muscle 1 1 10 100 1000 Frequency (Hz) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Conclusions POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control 1. Muscles have a broad range of potential function. 2. Matching natural inputs required to reveal function 3. Can not refute EAP as artifical muscle Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control MURI Year Two Meeting2000 E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Professor Robert J. Full Dr. Anna Ahn Dr. Kenneth Meijer Basic properties of natural muscle Low-Level Control High-Level Control MURI First direct comparison of natural muscle to artificial muscle Fabrication Diverse roles of muscles Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Multiple Muscle Systems E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Complex, Redundant? or Diverse Functional Capacity? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Questions POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Why are there so many muscles operating at a single joint? Are all muscles created equal? Can differences in function be explained by neural activation alone? Can differences in function be explained by traditional characterizations? Are muscles mainly power generators? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Low-Level Control Hypotheses POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Muscles of the same anatomical group activated at the same time will function similarly. Two leg extensors acting at the same joint activated during leg extension will function similarly and both produce power. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control Two extensor muscles innervated by a single motor neuron muscle 178 E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley coxa-femur joint muscle 179 stance phase joint extension muscle shortening Anna Ahn small joint angle long muscle lengths large joint angle short muscle lengths Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Hypothesis: Muscles stimulated by the same motor neuron function similarly. UC Berkeley NEURAL CONTROL Stimulation patterns the same? INTRINSIC MUSCLE PROPERTIES Force-Length properties similar? Force-Velocity properties similar? Twitch kinetics similar? Shortening deactivation similar? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Stimulate motor neuron, while measuring EMG’s from 178 and 179. UC Berkeley 10 5 178 follows 179 178-179 EMG delay 0 (ms) -5 -10 178 precedes 179 0 150 100 50 Stimulation frequency (pps) (mean ± S.D.) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Hypothesis: Muscles stimulated by the same motor neuron function similarly. UC Berkeley NEURAL CONTROL Stimulation patterns the same? YES INTRINSIC MUSCLE PROPERTIES Force-Length properties similar? Force-Velocity properties similar? Twitch kinetics similar? Shortening deactivation similar? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Similar force-length properties UC Berkeley 178 179 1 0.8 Norm. 0.6 Force (F/Fo) 0.4 ranges of strains used during running 0.2 0 -30 -20 -10 0 10 20 Strain (%) 30 Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Hypothesis: Muscles stimulated by the same motor neuron function similarly. UC Berkeley NEURAL CONTROL Stimulation patterns the same? YES INTRINSIC MUSCLE PROPERTIES Force-Length properties similar? YES Force-Velocity properties similar? Twitch kinetics similar? Shortening deactivation similar? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control Similar force-velocity properties E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley 178 179 1 0.8 Normalized Force 0.6 (F/Fo) 0.4 max. in vivo velocity during running 0.2 0 0 1 2 3 4 5 6 Relative Velocity (L s-1) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Hypothesis: Muscles stimulated by the same motor neuron function similarly. UC Berkeley NEURAL CONTROL Stimulation patterns the same? YES INTRINSIC MUSCLE PROPERTIES Force-Length properties similar? YES Force-Velocity properties similar? YES Twitch kinetics similar? Shortening deactivation similar? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Similar isometric contraction kinetics 20 15 Stress 10 (N cm-2) 5 0 -5 100 Time 75 (ms) 50 25 0 UC Berkeley 178 179 0 50 100 150 Time (ms) Time to Time to Time to 90% 50% peak force relaxation relaxation Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Hypothesis: Muscles stimulated by the same motor neuron function similarly. UC Berkeley NEURAL CONTROL Stimulation patterns the same? YES INTRINSIC MUSCLE PROPERTIES Force-Length properties similar? YES Force-Velocity properties similar? YES Twitch kinetics similar? YES Shortening deactivation similar? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Similar shortening deactivation UC Berkeley 178 179 80 60 Force depression 40 (%) 20 0 0 2 4 6 Strain (%) 8 (mean ± S.D.) Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Hypothesis: Muscles stimulated by the same motor neuron function similarly. UC Berkeley NEURAL CONTROL Stimulation patterns the same? INTRINSIC MUSCLE PROPERTIES Force-Length properties similar? Force-Velocity properties similar? Twitch kinetics similar? Shortening deactivation similar? YES Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Low-Level Control POLY- P Muscle Power during Running E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Two extensor muscles at same joint stimulated by the SAME neuron have different function. Stiffening Element 3 W kg-2 6 Damper or brake -19 W kg-2 4 Stress 2 (N cm-2) 0 -2 -10 -5 0 Strain 5 10 = stimulation Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley What’s different? Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E Active force during shortening 178 179 stance UC Berkeley stance = stimulation Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Low-Level Control Conclusions E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley 1. Muscle function cannot be predicted from neural activity. Muscles innervated by the same motor neuron do NOT necessarily function similarly. 2. Muscles of the same anatomical group (178 and 179) can have many similar intrinsic muscle properties, but still function differently. 3. History-dependent properties may play an important role in determining muscle function. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 MURI Low-Level Control Implications for Robotics POLY- P E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley 1. Direct copying of the musculoskeletal system is likely to fail. Muscle have diverse roles that can only be revealed by extensive experimentation. 2. Control and energy management may be attained using actuators with different properties rather than sending out complex control signals. 3. EAPs with muscle-like properties are available. More direct comparison are needed. More emphasis on function in devices required. Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000 POLY- P MURI Robotic Applications of EAPs E D A L N Y N E O R E N IM C FO RG A A OM E MI L R O T C MA I TI S C N S O C LAB N E UC Berkeley Low-Level Control Leg actuator based on a stretched film actuator Second DOF Modular design composed of individual stretched film actuators integrated into a 6-legged walking robot CAD representation of the robot including a second degree of freedom Biomimetic Robots - ONR Site5/24/2017 Visit - August 9, 2000