Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Instrumentation Amplifier Noise Analysis 1 2 Three Stage IA Gain Set Resistor Vin- 5V Rg 1k Vin- = 2.499V + - 150k 150k A1 - 50k A3 + 50k Output Voltage Vin_dif = 2mV + Vin+ Differential Input Voltage Vout Vin+ = 2.501V 150k 150k A2 Reference Input 3 Real World Input to Mathematical Model Vcc Vdif Vinp + Vinn Vcm = 2 + Vinn -Vdif 2 + + Vinp Vdif 2 4 Analyze the Input and Output Separately Vss VEE1 12 Vcc VCC1 12 -Vdif 2 Vin- Vcc Va1 + + - R3 40k R5 40k A1 Vss R1 25k R7 49.9 Vss VCM + - A3 Vout + R2 25k Vcc Vss - Vdif 2 R4 40k + + A2 R6 40k Va2 Vcc Vin+ Input Stage Differential Gain Stage Output Stage Dif Amp 5 Split Input Stage in Half -Vdif 2 Va1 Vin- + -Vdif 2 VCM Vin- + + - A1 Rg 1k A1 Split Input Stage 50k Rg 2 + VCM + Vdif 2 Va1 Rf Rg 2 + + + - VCM 50k VCM R Vdif 1+2 f Rg 2 + Vin+ Rf - A2 Va2 Input Stage Differential Gain Stage Vdif 2 + Vin+ VCM + + A2 Va2 R Vdif 1+2 f Rg 2 6 Use Superposition on Output Amp Va1 Va1 R3 40k R3 40k R5 40k Va1 R5 40k Va1 Inverting Amp Gain = -1 - Vin_dif Va2 A3 R3 40k R6 40k Va2 Output Stage Dif Amp Vout + -Va1 Vout + R4 40k A3 - Non-inverting Amp Gain = 2 Voltage Divider Gain = 1/2 Va2 Va2 R5 40k + R4 40k Va2 Vref + 2 2 A3 Vout Va2 + Vref R6 40k Vref Find Vout Through Superposition Vout = Va2 – Va1 + Vref 7 Gain For Three Amp IA Rf Va1 Vcm 1 2 2 Rg [1] Input Stage Top Half Rf Va2 Vcm 1 2 2 Rg [2] Input Stage Bottom Half Vdif Vdif Vout Va2 Va1 Vref Vout Vdif Rf Vdif Rf Vcm 2 1 2 R Vcm 2 1 2 R Vref g g Vout Rf Vdif 1 2 Vref Rg [3] Output Stage Substitute [1] and [2] into [3] [4] Simplify 8 9 Complex Noise Model -Vdif 2 Vin- Vcc Va1 + + - R5 40k A1 Vss R1 25k R7 49.9 Vss VCM + - A3 Vout + R2 25k Vcc Vss - Vdif 2 + R6 40k + A2 Va2 Vcc Vin+ 10 The Complex Model is Simplified Input Stage in_out Input gain = G Output Stage Vn_out Output gain = 1 Vout Vn_in in_out Vn_RTI Total gain = G Vn_out Vn_RTI Vn_out 2 Vn_in G 2 Vout Vn_out G 2 2 Vn_in 11 The Input amplifier dominates at High Gain From INA333 Data Sheet G Total InputReferred Noise (nV/rtHz) Total Output Noise (nV/rtHz) 1 206.2 206.2 2 111.8 223.6 5 64 320 10 53.9 539 100 50 5000 1000 50 50,000 12 Two Ways to represent INA Spectral Density From INA333 Data Sheet From INA128 Data Sheet G Input-Referred Noise (nV/rtHz) G Input-Referred Noise (nV/rtHz) 1 110 1 206.2 10 12 10 53.9 100 8 100 50 1000 8 1000 50 Taken directly from the graph Calculated using graphs and formula 13 14 Find the total RMS Noise Voltage at the Output +V= 5V 5V Vin- = 2.499V + A1 - 150k 150k Rg 1k 5k 5k Vss 50k INA333 Vout A3 + 5k 5k 50k - Vin_dif = 2mV - 150k 150k A2 + Vss Vin+ = 2.501V 5V -V= GND 100k + 100k 15 Look at Noise Sources: Bridge, INA333, Reference Buffer +V= 5V 5V Vin- = 2.499V + A1 - 150k 150k Rg 1k 5k 5k Vss 50k INA333 Vout A3 + 5k 5k 50k - Vin_dif = 2mV - 150k 150k A2 + Vss Vin+ = 2.501V 5V -V= GND 100k + 100k 16 Noise Equivalent Model for Reference Pin Buffer Vss 5V 5V 100k OPA333 + - Vref_pin OPA333 100k 100fA + 55nV 30nV 100k || 100k 50k 17 Reference buffer 5V - Vref_pin OPA333 23 kn 1.38 10 Boltzmann’s constant Tk 273 25 Temperature in Kelvin Req 50k 100fA + Input resistance (parallel combination of voltage divider) 55nV 30nV 100k || 100k 4kn Tn Req en_r nV 28.7 Thermal Noise from input resistor Hz 50k in Current noise from OPA333 100fA en_i in Req en_opa en_ref 55 5 nV Voltage Noise from current noise Hz nV Voltage noise from OPA333 Hz 2 2 2 en_opa en_r en_i 62.2 nV Hz Total rms noise from reference driver circuit 18 The reference voltage directly adds to the output noise Output Stage Input Stage in_out Input gain = G Vn_in Vn_out Vout Output gain = 1 Σ en_ref 9 en_ref 62.2 10 9 Vn_out 200 10 2 2 9 Output_Stage_Noise en_ref Vn_out 209.449 10 19 The bridge generates: thermal noise, in x R_bridge en_r R/2 inn - Vcc R R + inn R R Use superposition to combine noise sources on the negative and positive input. + inp en_r R/2 + inp 20 Noise From Bridge / Current Sources Vcc 5k 5k R inn 2 Voltage noise from current noise en_rb R 4kn Tn 2 Use superposition to add the noise from the input resistance and both current noise sources inn 5k INA333 5k 2 ein_i + inp Resistor Noise 2 i R e nn n_rb 2 2 2 i R e np n_rb 2 Assume inn inp Note that these sources are uncorrelated 2 ein_i R 2 2 in 2 en_rb 2 Total Noise from input resistors and current source For this example (R=5kO, in = 100fA/rtHz) nV Resistor noise en_rb 6.4 R inn 2 0.25 ein_i 2 ( 0.5) 2 ( 9.1) Hz nV Voltage noise from current noise Hz 2 2 9.1 nV Hz Total Noise from input 21 resistors and current source Combine all the noise sources Sensor Noise 9nV/rtHz Input Stage Noise Output Stage Noise 50nV/rtHz 200nV/rtHz +V= 5V Vin- 5V + - 150k 150k A1 Rg 1k 5k 5k 50k INA333 5k 5k 50k Vin+ 150k A2 - Vout A3 + 150k + Reference Buffer Noise 62nV/rtHz Vss 5V -V= GND 100k OPA333 + 100k 22 Rule of 3x Vn 6 1 . 3 Vn 3Vn 3 Vn 2 Vn 2 2 9 Vn Vn 2 3.16Vn Dominant Neglect When adding two uncorrelated noise terms, the larger term will dominate if it is 3 times larger then the smaller term. You can neglect the smaller term with a relatively small error (i.e. 6%). 23 For this example compute noise spectral density refered to the input 2 Noise_Spec_Den_RTI Vn_ref_buf 2 2 Vn_out_stage Vn_in_stage Vn_bridge G G Noise_Spec_Den_RTI 200 62 ( 50) ( 9) 100 100 2 Dominant 2 2 Neglect 2 50.847 2 nV Hz Approximately equal to the dominant term 24 Bandwidth from Data Sheet For G = 100 20dB/decade 1st order Kn = 1.57 25 Calculate RMS Output Noise for INA333 From Voltage Noise G 100 Vin_RTI fH Kn From "Input referred noise" equation 50.85nV/rtHz 3.5kHz From data sheet table for gain = 100 1.57 For first order function See Gain vs Frequency in the data sheet BW n fH Kn en_out en_outPP 5.495kHz G Vin_RTI BW n 6.en_out Noise Bandwidth 376.9Vrms 2.26mVpp RMS Output Noise Peak-to-Peak Output 26 27 Simulate the Circuit VIN_N 2.5V R3 5k RG U1 INA333 VVout 2.5V Out RG R5 5k Ref V+ + VIN_P 2.5V Vref 2.5V Vcc Vcc - Vjunk 0V Vcc + + U2 OPA333 VG1 0 V4 5 + R6 100k R4 5k R1 100 - R7 100k R2 5k Vcc Vcc 28 Using Tina Spice 29 Noise Spectral Density at the Output Voltage Spectral Density Out vs. Frequency 10.00u 5.2uV/rtHz Vout Vout (V/rtHz) T -3db @ 3.91kHz 10.00n 1 10 100 1k 10k 100k 1M Frequency (Hz) 30 Total RMS Noise at the Output T Vn output Total RMS Noise (Vrms) 500u Simulation = 422uVrms Hand Calc = 377uVrms 375u 250u 125u 0 1 10 100 1k 10k 100k 1M Frequency (Hz) 31 Why doesn’t calculation match simulation exactly? Bandwidth from Data Sheet and simulated bandwidth is different. Voltage Spectral Density Out vs. Frequency 10.00u 5.2uV/rtHz Vout Vout (V/rtHz) T The roll-off was approximated as first order in the calculations. Simulation shows that it is not first order. -3db @ 3.91kHz 10.00n 1 10 100 1k 10k Frequency (Hz) 100k 1M 32 33 Averaging Circuit Rf R1 V1 Vcc - Vout R2 + V2 OPA335 Vss R3 Vref V3 RN VN Vout V1 V2 V3 Vref Rf ... R1 R2 R3 VN RN [15] For an averaging circuit choose R1 = R 2 = R 3 = ... R N = R Rf = R / N Vout Vref V1 V2 V3 ... VN [16] N 34 Noise in Averaging Circuit v noise_output vnoise1 N 2 vnoise2 N 2 vnoise3 N 2 vnoiseN ... N 2 Where v noise1 , vnoise2 , vnoise3 , ... vnoiseN are noise sources If you assume that v noise1 , vnoise2 , vnoise3 , ... vnoiseN are equal uncorrelated noise sources, then v noise_output vnoise N N 2 v noise N 2 v noise N [17] 35 Averaging Circuit with INA333 Vss + Vdif 2.4mV R1 100 2 1 4 U1 RG V- R4 100k INA333 8 Out Ref 6 RG V+ 3 72uA 24uA 5 + R7 33.3k 7 V2 2.5 Vcc Vref Vss Vss R2 100 2 1 _ - 4 U2 RG V- 8 Vout + U4 OPA335 Out Ref 6 RG V+ Vcc 24uA Vref 5 + + R5 100k INA333 3 7 2.4V Vref Vcc Vref Vss 2 R3 100 2.5V _ 1 _ 4 U2 RG V- R6 100k INA333 8 Out Ref RG V+ 3 6 24uA 5 + 2.4V 7 Vcc Vref 36 Vref Experiment with 20 Parallel INA333 Socketed Gain Set Resistors 20 INA333 amps in parallel (jumper selectable) OPA333 Averaging Circuit 37 Standard Noise Measurement Precautions Linear Power Source Steel Paint Can for Shielding 38 Total Output Noise vs Number of Amplifiers Being Averaged Noise vs Number of Amplifiers 0.0016 Total Output Noise (V rms) 0.0014 measured 0.0012 ideal (from tina) 0.001 0.0008 0.0006 0.0004 0.0002 0 0 5 10 15 20 Number of Amplifiers in Average Circuit 39 Measured Noise Spectral Density vs Number of Averages 1.E-05 Avg = 1 Avg = 2 Avg = 5 1.E-06 Avg = 15 Avg = 20 1.E-07 1 10 100 Frequency (Hz) 1000 10000 Simulated Noise Spectral Density vs Number of Averages 1E-4 Output noise (V/rtHz) Measured vs simulated spectral density Output Noise (V/rtHz) 1.E-04 1E-5 Avg = 1 Avg = 2 Avg = 5 Avg = 15 Avg = 20 1E-6 1E-7 1 10 100 Frequency (Hz) 1k 10k 40 References 1. 2. [1] Hann, Gina. "Selecting the right op amp - Electronic Products." Electronic Products Magazine – Component and Technology News. 21 Nov. 2008. Web. 09 Dec. 2009. <http://www2.electronicproducts.com/Selecting_the_right_op_amp-articlefacntexas_nov2008-html.aspx>. Henry W. Ott, Noise Reduction Techniques in Electronics Systems, John Wiley and Sons Acknowledgments: 1. 2. 3. 8. R. Burt, Technique for Computing Noise based on Data Sheet Curves, General Noise Information T. Green, General Information B. Trump, General Information Matt Hann, General INA information and review Noise Article Series (www.en-genius.net) http://www.en-genius.net/site/zones/audiovideoZONE/technical_notes/avt_022508 41 Thank You for Your Interest in INA Noise – Calculation and Measurement 42