Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
18.336 spring 2009 lecture 23 05/05/08 Navier-Stokes Equations � ut + (u · �)u = −�p + 1 �2 u Re [+g] Momentum equation �·u=0 Incompressibility Incompressible flow, i.e. density ρ = constant. Reynolds number: Re = U ·L inertial forces = ν viscous forces U = Characteristic velocity L = Characteristic length scale ν = Kinetic viscosity � � u in 2D: u = v 1 (1) ut + uux + vuy = −px + Re (uxx + uyy ) (2) vt + uvx + vvy = −py + 1 (v Re xx Image by MIT OpenCourseWare. + vyy ) (3) ux + vy = 0 Famous Problems: Lid driven cavity Flow around cylinder Image by MIT OpenCourseWare. 3 unknowns, 3 equations DAE (Differential Algebraic System), (3) is a constraint 1 Solve by projection approach: In each time step 1 2 �u I. Solve ut + (u · �)u = Re U∗ − Un 1 2 n � U = −(U n · �)U n + Δt Re Note: � · U ∗ � = 0 II. Project on divergence-free velocity field U n+1 − U ∗ = −�p Δt ! What is p : 0 = � · U n+1 = � · U ∗ − Δt�2 P 1 ⇒ �2 p = � · U∗ Poisson equation for pressure Δt Discretization: Solution: u = v = 0, p = constant Image by MIT OpenCourseWare. But: Central differences on grid allow solution Uij = Vij = 0, � � P1 i + j even for Pij = P2 i + j odd Image by MIT OpenCourseWare. Fix: Staggered grid × pressure p • velocity u ◦ velocity v Image by MIT OpenCourseWare. 2 Boundary Conditions: U13 = uw U21 + U22 = us ⇒ U21 + U22 = 2us 2 Image by MIT OpenCourseWare. Numerical Method: I. a) Treat Nonlinear Terms uux + vuy = (u2 )x + (uv)y uvx + vvy = (uv)x + (v 2 )y � � ∂(U 2 ) ∂x � = (Ui+ 1 ,j )2 − (Ui− 1 ,j )2 2 � = Uij 2 Δx ij ∂(U V ) ∂y (use ux + vy = 0) Ui,j+ 1 Vi,j+ 1 − Ui,j− 1 Vi,j− 1 2 2 2 2 Δy ij � � Ui+ 1 ,j Vi+ 1 ,j − Ui− 1 ,j Vi− 1 ,j ∂(U V ) 2 2 2 2 = ∂x Δx ij � ∂(V 2 ) ∂y � = Ui,j+ 1 2 (Vi,j+ 1 )2 − (Vi,j− 1 )2 ij 2 2 � Δy � ∂(U V ) ∂y ij Image by MIT OpenCourseWare. Ui,j + Ui+1,j Ui,j + Ui,j+1 , Ui,j+ 1 = 2 2 2 � �n � �n ∗ n 2 Ui,j − Ui,j ∂(U ) ∂(U V ) =− − Δt ∂x i,j ∂y i,j � � � �n n Vi,j ∗ − Vi,j n ∂(U V ) ∂(V 2 ) =− − Δt ∂x ∂y i,j i,j where Ui+ 1 ,j = 2 3 I. b) Implicit Diffusion U ∗∗ − U ∗ 1 = K2D · U ∗∗ Δt Re ∗∗ ∗ V −V 1 = K2D · V ∗∗ Δt Re ↑ 5 point Laplace stencil with Dirichlet boundary conditions II. Pressure Correction � � 1 ∂U ∗∗ ∂V ∗∗ K2D · P = + Δt ∂x ∂y with Neumann boundary conditions ∂p = 0 ∂n ∂U ∂x U Image by MIT OpenCourseWare. n+1 ∗∗ −U ∂P =− Δt ∂x n+1 ∗∗ V −V ∂P =− Δt ∂y U 4 MIT OpenCourseWare http://ocw.mit.edu 18.336 Numerical Methods for Partial Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.