Download Navier-Stokes Equations

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
18.336 spring 2009
lecture 23
05/05/08
Navier-Stokes Equations
�
ut + (u · �)u = −�p +
1
�2 u
Re
[+g] Momentum equation
�·u=0
Incompressibility
Incompressible flow, i.e. density ρ = constant.
Reynolds number:
Re =
U ·L
inertial forces
=
ν
viscous forces
U = Characteristic velocity
L = Characteristic length scale
ν = Kinetic viscosity
� �
u
in 2D: u =
v
1
(1) ut + uux + vuy = −px + Re
(uxx + uyy )
(2) vt + uvx + vvy = −py +
1
(v
Re xx
Image by MIT OpenCourseWare.
+ vyy )
(3) ux + vy = 0
Famous Problems:
Lid driven cavity
Flow around cylinder
Image by MIT OpenCourseWare.
3 unknowns, 3 equations
DAE (Differential Algebraic System), (3) is a constraint
1
Solve by projection approach:
In each time step
1
2
�u
I. Solve ut + (u · �)u =
Re
U∗ − Un
1 2 n
�
U
= −(U n · �)U n +
Δt
Re
Note: � · U ∗ �
= 0
II. Project on divergence-free velocity field
U n+1 − U ∗
= −�p
Δt
!
What is p : 0 = � · U n+1 = � · U ∗ − Δt�2 P
1
⇒ �2 p =
� · U∗
Poisson equation for pressure
Δt
Discretization:
Solution:
u = v = 0,
p = constant
Image by MIT OpenCourseWare.
But: Central differences
on grid allow solution
Uij = Vij = 0,
�
�
P1
i + j even
for
Pij =
P2
i + j odd
Image by MIT OpenCourseWare.
Fix: Staggered grid
× pressure p
• velocity u
◦ velocity v
Image by MIT OpenCourseWare.
2
Boundary Conditions:
U13 = uw
U21 + U22
= us ⇒ U21 + U22 = 2us
2
Image by MIT OpenCourseWare.
Numerical Method:
I. a) Treat Nonlinear Terms
uux + vuy = (u2 )x + (uv)y
uvx + vvy = (uv)x + (v 2 )y
�
�
∂(U 2 )
∂x
�
=
(Ui+ 1 ,j )2 − (Ui− 1 ,j )2
2
�
=
Uij
2
Δx
ij
∂(U V )
∂y
(use ux + vy = 0)
Ui,j+ 1 Vi,j+ 1 − Ui,j− 1 Vi,j− 1
2
2
2
2
Δy
ij
�
�
Ui+ 1 ,j Vi+ 1 ,j − Ui− 1 ,j Vi− 1 ,j
∂(U V )
2
2
2
2
=
∂x
Δx
ij
�
∂(V 2 )
∂y
�
=
Ui,j+ 1
2
(Vi,j+ 1 )2 − (Vi,j− 1 )2
ij
2
2
�
Δy
�
∂(U V )
∂y
ij
Image by MIT OpenCourseWare.
Ui,j + Ui+1,j
Ui,j + Ui,j+1
,
Ui,j+ 1 =
2
2
2
�
�n
�
�n
∗
n
2
Ui,j − Ui,j
∂(U )
∂(U V )
=−
−
Δt
∂x i,j
∂y
i,j
�
�
�
�n
n
Vi,j ∗ − Vi,j n
∂(U V )
∂(V 2 )
=−
−
Δt
∂x
∂y i,j
i,j
where Ui+ 1 ,j =
2
3
I. b) Implicit Diffusion
U ∗∗ − U ∗
1
=
K2D · U ∗∗
Δt
Re
∗∗
∗
V −V
1
=
K2D ·
V ∗∗
Δt
Re
↑
5 point Laplace stencil with Dirichlet boundary conditions
II. Pressure Correction
�
�
1 ∂U ∗∗ ∂V ∗∗
K2D · P =
+
Δt
∂x
∂y
with Neumann boundary conditions
∂p
= 0
∂n
∂U
∂x
U
Image by MIT OpenCourseWare.
n+1
∗∗
−U
∂P
=−
Δt
∂x
n+1
∗∗
V
−V
∂P
=−
Δt
∂y
U
4
MIT OpenCourseWare
http://ocw.mit.edu
18.336 Numerical Methods for Partial Differential Equations
Spring 2009
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Related documents