Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Aim: How do we multiply complex numbers? Do Now: Write an equivalent expression for 74 62 Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. The Powers of i 1 2 i2 = –1 1 2 i2 = –1 Find the product: 3(-2 + 3i) distributive property (3)(-2) + (3)(3i) -6 + 9i Find the product: i4(-2 + 3i) distributive property (i4)(-2) + (i4)(3i) simplify -2i4 + 3i5 -2 + 3i Aim: Multiply Complex Numbers i0 = 1 i1 = i i2 = –1 i3 = –i i4 = 1 i5 = i i6 = –1 i7 = –i i8 = 1 i9 = i i10 = –1 i11 = –i i12 = 1 Course: Adv. Alg. & Trig. FOILing Complex Numbers Multiply the binomials (3 + 2i)(2 + i) F- (3 + 2i)(2 + i) O- (3 + 2i)(2 + i) I- 6 +3i (3 + 2i)(2 + i) +4i + 4i L - (3 + 2i)(2 + i) 2i2 = -2 6 + 7i –2 4 + 7i Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Distributive Property Multiply the binomials (3 + 2i)(2 + i) distribute: 3(2 + i) + 2i(2 + i) 6 + 3i + 4i + 2i2 6 + 7i + 2i2 i2 = -1 6 + 7i + 2(-1) 4 + 7i Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Conjugates 2x2 - 50 = 2(x – 5)(x + 5) conjugates of each other General Terms a2 – b2 = (a – b)(a + b) When conjugates are multiplied, the result is the difference between perfect squares. The conjugate of a complex number a + bi is i2 = -1 a – bi (a + bi)(a – bi) = a2 – (bi)2 = a2 – b2i2 = a2 + b2 (5 + 2i)(5 – 2i) = 52 – (2i)2 = 25 – b2i2 = 25 + 4 = 29 The product of two complex numbers that are conjugates is a real number. Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Model Problems Express the number (4 – i)2 – 8i3 in simplest form. (4 – i)2 – 8i3 = (4 – i)(4 – i) – 8i3 = 16 – 8i + i2 – 8i3 = 16 – 8i – 1 – 8(-i) = 15 i3 = -i Express the product of 2 i 5 and its conjugate in simplest form 2 i 52 i 5 4 5 9 (a + bi)(a – bi) = a2 + b2 a = 2 b= 5 Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Model Problems 6 2 8i 3 5 7i 3 4i 2 6 4i 6 4i Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Model Problems 8 11 5 2i 8 11 2 4 3i 2 5i 4 3i Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Graph Representation Multiply i(2 + i) i(2 + i) = 2i + i2 = -1 + 2i yi 5i Draw & 4i compare vectors 3i 2 + i & -1 + 2i (-1 + 2i) 2i i -5 -4 -3 -2 -1 Multiplication by i is equivalent to a counterclockwise rotation of 900 about the origin. -i -2i (2 + i) 0 1 2 3 4 R x 5 6 (2 i) 1 2i 0 90 -3i rotational transformation Rotation of 900 about the origin -4i R90º(x,y) = (y,-x) -5i -6i Aim: Multiply Complex Numbers i(2 + i) = -1 + 2i Course: Adv. Alg. & Trig. Graph Representation Multiply by distributing (3 + 2i)(2 + i) distributed: 3(2 + i) + 2i(2 + i) = 4 + 7i D33 2 i 6 3i Multiplication by 3 is equivalent to a dilation of 3. -5 -4 -3 -2 -1 5i yi 4i (6 + 3i) 3i 2i i -i (2 + i) 0 1 2 3 4 x 5 6 -2i -3i -4i -5i -6i Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Graph Representation (con’t) Multiply by distributing (3 + 2i)(2 + i) distributed: 3(2 + i) + 2i(2 + i) = 4 + 7i (6 + 3i) Rotation of 900 about the origin R90º(x,y) = (y,-x) Multiplication by i is equivalent to a counterclockwise rotation of 900 about the origin. -5 recall: 5i (-2 + 4i) R 2 i 1 2i 4i 2i i -4 -3 -2 -1 Multiplication by 2 is equivalent to a dilation of 2. 0 90 2•i(2 + i) = 2(-1 + 2i) 3i (-1 + 2i) i(2 + i) = -1 + 2i yi -i -2i (2 + i) 0 1 2 3 4 x 5 6 D2 1 2i 2 4i -3i -4i -5i -6i Aim: Multiply Complex Numbers Course: Adv. Alg. & Trig. Graph Representation (con’t) Multiply the binomials (3 + 2i)(2 + i) 3(2 + i) + 2i(2 + i) = 4 + 7i (6 + 3i) + (-2 + 4i) 7i yi (4 + 7i) 6i 5i (-2 + 4i) 4i (6 + 3i) 3i 2i i -5 -4 -3 -2 -1 -i 0 1 2 3 4 5 6 x -2i -3i Aim: Multiply Complex Numbers -4i Course: Adv. Alg. & Trig.