Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lesson Objectives: Revise Surd Algebra Here are some statements about surds. Decide if they are: True for any numbers a and b True for some numbers a and b Never true ab a b ab a b a a a a b b a a a a b a b 1 a a a a 2 a If you have finished check to see if you get the same results for cube roots. Four Main Rules of Surd Algebra: 1) You can collect like surds together 3 2 4 5 2 2 5 2 2 6 5 2) You can multiply two surds together 3 2 4 5 12 10 3) The square root of ‘a’ times the square root of ‘a’ is always ‘a’ 5 5 25 5 4) You can simplify a surd fraction by rooting the tops and bottoms separately 16 16 4 25 25 5 Compare this to: 3x + 4y – x +2y = 2x + 6y Compare this to: 3x × 4y = 12xy 1) 4 3 5 3 2 7 2) 3) 8 34 3 12 6 2 6 4) 5 2 4 3 2 2 5) 6) 19) 6 6 3 5 10) 4 2 5 11) 5 32 2 20) 12) 21) 10 5 2 5 13) 4 3 2 2 3 5 3 3 3 7 3 22) 81 9 16 4 3 14) 6 32 2 2 34 2 15) 3 2 2 8 16) 4 3 3 8 3 7) 6 4 3 3 4 3 2 17) 6 12 2 2 9) 4 7 10 3 6 7 3 18) 2 15 9 2 2 8) 2 36 Simplify each expression If you do it correctly they should pair up! 5 32 2 12 6 2 6 8 34 3 2 36 3 2 2 8 4 3 2 3 3 2 3 5 3 3 3 7 3 5 2 4 32 2 6 32 2 2 34 2 10 5 2 5 16 4 2 4 2 5 4 3 5 3 2 7 4 7 10 3 6 7 3 81 9 2 6 4 3 3 4 3 4 3 3 8 6 12 2 2 6 6 3 5 2 15 9 2 Can you complete this addition square? Can you complete this multiplication square? Make up your own one of each type! Important Skills: Simplifying a surd: Rationalising a surd Simplify these surds: a) 18 b) 45 c) 32 d) 28 e) 27 f) 80 g) 300 h) 48 i) 63 j) 75 k) 50 l) 108 Simplify these expressions: 8 18 50 18 8 32 8 32 8 3 12 20 5 5 20 99 44 11 20 5 27 27 Rationalise: 4 2√3 - 4 Simplify: 4 2√3 + 5 4√7 Simplify: (3 √5)2 (3 √5)3 (3 √5)4 Solve: (3x + 4√5) = 2 (3x - 4√3) Basic Surd Skills 1) Simplify/Cancel single surd terms 2) Add and subtract Surds 3) Multiply and divide surds 4) Rationalise Surds