Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Algebra 2 4.2, 4.3a Machhapuchhare SAT Question: When it is 7:00 am in Seattle, it is 10:00 am in Philadelphia. A plane is scheduled to leave Philadelphia at 11:30 am (Philadelphia time) and to arrive in Seattle at 4:15 pm (Seattle time). How many hours are scheduled for the trip? 3 A. 4 4 3 B. 5 4 C. 1 6 4 D. 1 7 4 E. 3 7 4 11:30 to 4:15 is 4 ¾ hours. Add three hours for the time change. E is the answer. The substitution method is best to use when one equation is solved for one of the variables, or when one equation has a variable with a coefficient of 1. 2 x 1 y 6 3x 4 y 4 y 2 x 6 3x 4 y 4 3x 4(2 x 6) 4 3x 8x 24 4 5x 24 4 5x 20 x4 y 2(4) 6 y 8 6 y 2 (4, 2) Example 2 2 y 1 x 1 3 y 2 x 12 x 2 y 1 3 y 2 x 12 3 y 2( 2 y 1) 12 3 y 4 y 2 12 7 y 2 12 7 y 14 y2 x 2 y 1 x 2(2) 1 x 3 (3, 2) Example 3 5 x 3 y 6 1x y 1 x y 1 5x 3 y 6 5( y 1) 3 y 6 5y 5 3y 6 8y 5 6 8 y 11 11 y 8 x y 1 11 x 1 8 3 x 8 3 11 , 8 8 The linear combination method works best when both equations are in the form Ax + By = C, and especially when none of the variables have a coefficient of 1. We use the properties of addition and multiplication to solve using linear combinations. Steps: 1. Write both equations in the form Ax + By = C 2. Clear fractions or decimals. 3. Choose a variable to eliminate. 4. Eliminate the variable by multiplying by an appropriate number to make the two variables add to zero; then add the equations together. 5. Check by substituting answer into original equations. Example 1: 3x 4 y 1 3x 2 y 0 3x 4 y 1 3x 2 y 0 2 y 1 1 y 2 3 x 4 y 1 1 3 x 4 1 2 3x 2 1 3x 1 1 x 3 1 1 , 3 2 3x 3 y 15 Example 2: 2 x 6 y 22 2) 3 x 3 y 15 2 x 6 y 22 6 x 6 y 30 2 x 6 y 22 4 x 8 x2 3 x 3 y 15 3(2) 3 y 15 6 3 y 15 3y 9 y 3 2,3 Example 3: 6 x 2 y 16 12 x 5 y 31 2) 6 x 2 y 16 12 x 5 y 31 12 x 4 y 32 12 x 5 y 31 y 1 y 1 6 x 2 y 16 6 x 2(1) 16 6x 2 16 6x 18 x 3 3,1 Example 4: 5 x 4 y 11 3x 5 y 23 5) 5 x 4 y 11 4) 3 x 5 y 23 25 x 20 y 55 12 x 20 y 92 37 x 37 x 1 5 x 4 y 11 5(1) 4 y 11 5 4 y 11 4 y 16 y4 1, 4 Example 5: 0.3x 0.5 y 0.1 0.01x 0.4 y 0.38 10) 0.3x 0.5 y 0.1 100) 0.01x 0.4 y 0.38 3x 5 y 1 3) x 40 y 38 3x 5 y 1 3x 120 y 114 115 y 115 y 1 3x 5 y 1 3x 5(1) 1 3x 5 1 3x 6 x2 2,1 Example 5: 2 1 2 x 3 y 1 3 x 1 y 2 4 3 1 3 2 2 x(6) y (6) 1(6) 2 3 3 3 1 4 x(12) y (12) 2(12) 4 3 3x 4 y 6 9 x 4 y 24 12 x 30 5 x 2 5 3 4 y 6 2 15 4y 6 2 15 (2) 4 y (2) 6(2) 2 15 8 y 12 5 x 2 15 8 y 12 8 y 3 3 y 8 5 3 , 2 8 Example of simple word problem: Eight small boxes plus 5 large boxes cost $184. A large box costs $3.00 more than a small box. What is the cost of each size of box? x = small box y = large box 8 x 5 y 184 y 3 x 8x 5(3 x) 184 8 x 15 5 x 184 13x 169 x 13 y 3 13 y 16 $13 for small box; $16 for large box Classwork: 2, 10, 14, 18, 22/166; 2/171 Get ready for a “Small Quiz” to be written on your grade sheet. THE END Quiz. Copy the problems and write the answer. Find the solution by graphing: 3x 2 y 4 2x y 5 Put your grade paper on the front of your row, quiz side down.