Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Solving Equations with 7-8 Variables on Both Sides Warm Up Problem of the Day Lesson Presentation Lesson Quizzes Solving Equations with 7-8 Variables on Both Sides Warm Up Solve. 1. 2x + 9x – 3x + 8 = 16 x=1 2. –4 = 6x + 22 – 4x x = –13 3. 2 + x = 5 1 x = 34 7 7 7 4. 9x – 2x = 3 1 16 4 8 x = 50 Solving Equations with 7-8 Variables on Both Sides Problem of the Day An equilateral triangle and a regular pentagon have the same perimeter. Each side of the pentagon is 3 inches shorter than each side of the triangle. What is the perimeter of the triangle? 22.5 in. Solving Equations with 7-8 Variables on Both Sides Sunshine State Standards Preview of MA.912.A.3.1 Solve linear equations in one variable that include simplifying algebraic expressions. Solving Equations with 7-8 Variables on Both Sides Some problems produce equations that have variables on both sides of the equal sign. Solving an equation with variables on both sides is similar to solving an equation with a variable on only one side. You can add or subtract a term containing a variable on both sides of an equation. Solving Equations with 7-8 Variables on Both Sides Additional Example 1A: Solving Equations with Variables on Both Sides Solve. 4x + 6 = x 4x + 6 = x – 4x – 4x 6 = –3x 6 = –3x –3 –3 –2 = x Subtract 4x from both sides. Divide both sides by –3. Solving Equations with 7-8 Variables on Both Sides Helpful Hint Check your solution by substituting the value back into the original equation. For example, 4(-2) + 6 = -2 or -2 = -2. Solving Equations with 7-8 Variables on Both Sides Additional Example 1B: Solving Equations with Variables on Both Sides Solve. 9b – 6 = 5b + 18 9b – 6 = 5b + 18 – 5b – 5b Subtract 5b from both sides. 4b – 6 = 18 +6 +6 4b = 24 4b = 24 4 4 b=6 Add 6 to both sides. Divide both sides by 4. Solving Equations with 7-8 Variables on Both Sides Additional Example 1C: Solving Equations with Variables on Both Sides Solve. 9w + 3 = 9w + 7 9w + 3 = 9w + 7 – 9w – 9w 3≠ Subtract 9w from both sides. 7 No solution. There is no number that can be substituted for the variable w to make the equation true. Solving Equations with 7-8 Variables on Both Sides Helpful Hint If the variables in an equation are eliminated and the resulting statement is false, the equation has no solution. Solving Equations with 7-8 Variables on Both Sides Check It Out: Example 1A Solve. 5x + 8 = x 5x + 8 = x – 5x – 5x 8 = –4x 8 = –4x –4 –4 –2 = x Subtract 5x from both sides. Divide both sides by –4. Solving Equations with 7-8 Variables on Both Sides Check It Out: Example 1B Solve. 3b – 2 = 2b + 12 3b – 2 = 2b + 12 – 2b – 2b Subtract 2b from both sides. b–2= +2 b = 12 + 2 Add 2 to both sides. 14 Solving Equations with 7-8 Variables on Both Sides Check It Out: Example 1C Solve. 3w + 1 = 3w + 8 3w + 1 = 3w + 8 – 3w – 3w 1≠ Subtract 3w from both sides. 8 No solution. There is no number that can be substituted for the variable w to make the equation true. Solving Equations with 7-8 Variables on Both Sides To solve multi-step equations with variables on both sides, first combine like terms and clear fractions. Then add or subtract variable terms to both sides so that the variable occurs on only one side of the equation. Then use properties of equality to isolate the variable. Solving Equations with 7-8 Variables on Both Sides Additional Example 2: Solving Multi-Step Equations with Variables on Both Sides Solve. 10z – 15 – 4z = 8 – 2z - 15 10z – 15 – 4z = 8 – 2z – 15 6z – 15 = –2z – 7 Combine like terms. + 2z + 2z Add 2z to both sides. 8z – 15 + 15 8z 8z 8 z = =8 = 8 8 =1 –7 +15 Add 15 to both sides. Divide both sides by 8. Solving Equations with 7-8 Variables on Both Sides Check It Out: Example 2 Solve. 12z – 12 – 4z = 6 – 2z + 32 12z – 12 – 4z = 6 – 2z + 32 8z – 12 = –2z + 38 Combine like terms. + 2z + 2z Add 2z to both sides. 10z – 12 = 38 + 12 +12 Add 12 to both sides. 10z = 50 10z = 50 Divide both sides by 10. 10 10 z=5 Solving Equations with 7-8 Variables on Both Sides Additional Example 3: Business Application Daisy’s Flowers sell a rose bouquet for $39.95 plus $2.95 for every rose. A competing florist sells a similar bouquet for $26.00 plus $4.50 for every rose. Find the number of roses that would make both florists’ bouquets cost the same price. Solving Equations with 7-8 Variables on Both Sides Additional Example 3 Continued 39.95 + 2.95r = 26.00 + 4.50r – 2.95r 39.95 – 2.95r = – 26.00 13.95 Subtract 2.95r from both sides. 26.00 + 1.55r Subtract 26.00 from both sides. – 26.00 = Let r represent the price of one rose. 1.55r 13.95 1.55r Divide both sides by = 1.55 1.55 1.55. 9=r The two services would cost the same when purchasing 9 roses. Solving Equations with 7-8 Variables on Both Sides Check It Out: Example 3 Marla’s Gift Baskets sells a muffin basket for $22.00 plus $2.25 for every balloon. A competing service sells a similar muffin basket for $16.00 plus $3.00 for every balloon. Find the number of balloons that would make both gift basket companies muffin baskets cost the same price. Solving Equations with 7-8 Variables on Both Sides Check It Out: Example 3 Continued 22.00 + 2.25b = 16.00 + 3.00b – 2.25b 22.00 – 2.25b Let b represent the price of one balloon. Subtract 2.25b from both sides. = 16.00 + 0.75b – 16.00 – 16.00 6.00 = 6.00 0.75 0.75b Subtract 16.00 from both sides. 0.75b Divide both sides by 0.75 0.75. 8=b The two services would cost the same when purchasing 8 balloons. = Solving Equations with 7-8 Variables on Both Sides Lesson Quizzes Standard Lesson Quiz Lesson Quiz for Student Response Systems Solving Equations with 7-8 Variables on Both Sides Lesson Quiz: Part I Solve. 1. 4x + 16 = 2x x = –8 2. 8x – 3 = 15 + 5x x=6 3. 2(3x + 11) = 6x + 4 no solution 1 1 x = 36 4. 4 x = 2 x – 9 5. An apple has about 30 calories more than an orange. Five oranges have about as many calories as 3 apples. How many calories are in each? An orange has 45 calories. An apple has 75 calories. Solving Equations with 7-8 Variables on Both Sides Lesson Quiz: Part II 5. The equation S = 2B + 2rh gives the surface area S of a cylinder with base area B, radius r, and height h. Solve the equation for h. Solving Equations with 7-8 Variables on Both Sides Lesson Quiz for Student Response Systems 1. Combine like terms. 4p + 14 = 11p A. p = 2 B. p = 7 C. p = 14 D. p = 15 Solving Equations with 7-8 Variables on Both Sides Lesson Quiz for Student Response Systems 2. Combine like terms. 3g – 6 = 4g – 7 A. g = 1 B. g = 7 C. g = 13 D. g = –13 Solving Equations with 7-8 Variables on Both Sides Lesson Quiz for Student Response Systems 3. Combine like terms. 3(g – 2) = 7g – 18 A. g = 2 B. g = 3 C. g = –3 D. g = –2 Solving Equations with 7-8 Variables on Both Sides Lesson Quiz for Student Response Systems 4. Solve for D. A. B. D = V C. D = mV D.