Download 2 - CFD

Document related concepts
no text concepts found
Transcript
PARTIAL DIFFERENTIAL
EQUATIONS
Formation of Partial Differential equations
Partial Differential Equation can be formed either
by elimination of arbitrary constants or by the
elimination of arbitrary functions from a relation
involving three or more variables .
SOLVED PROBLEMS
1.Eliminate two arbitrary constants a and b from
2
2
2
2
x  a    y  b  z  R here R is known constant
.
(OR) Find the differential equation of all spheres
of fixed radius having their centers in x y- plane.
solution
x  a    y  b 
2
2
 z  R .......1
2
2
Differentiating both sides with respect to x and y
z
2z
  2( x  a )
x
z
2z
 2 ( y  b )
y
z
z
 p,
q
x
y
 x  a   pz , y  b   qz
By substituting all these values in (1)
2
p z
2
 z
2
q z
2

p2
2
z
2
 R
2
R2
 q2 1
or
z2 
R2
 z 


 x 
2
 z

 y





2
1
2. Find the partial Differential Equation by eliminating
2
2
z

f
(
x

y
)
arbitrary functions from
SOLUTION
z  f ( x  y )..........(1)
d .w.r.to.xandy
2
2
z
'
2
2
 f ( x  y )  2 x......(2)
x
z
'
2
2
 f ( x  y )  2 y......(3)
y
By
( 2)
(3)
 z 


 x    x
y
 z 


 y 


p
x

 py  qx  0
q
y
3.Find Partial Differential Equation
by eliminating two arbitrary functions from
z  yf ( x)  xg( y )
SOLUTION
z  yf ( x)  xg( y )......(1)
Differentiating both sides with respect to x and y
z
 yf ( x)  g ( y )........( 2)
x
z
 f ( x)  xg ( y )........(3)
y
Again d . w .r. to x and yin equation (2)and(3)
 z
 f ( x)  g ( y )
xy
2
x  (2)  y  (3)......to...get
z
z
x
y

x
y
xg( y )  yf ( x)  xy( f ( x)  g ( y ))
 z  xy f   g 
  z 
z
z

x
y
 z  xy
x
y
 xy 
2
Different Integrals of Partial Differential
Equation
1. Complete Integral (solution)
z z
Let F ( x, y, z, , )  F ( x, y, z, p, q)  0......(1)
x y
be the Partial Differential Equation.
The complete integral of equation (1) is given
by  ( x, y, z , a, b)  0..........(2)
2. Particular solution
A solution obtained by giving particular values to
the arbitrary constants in a complete integral is
called particular solution .
3.Singular solution
The eliminant of a , b between
 ( x, y , z , a , b )  0


 0,
0
a
b
when it exists , is called singular solution
4. General solution
In equation (2) assume an arbitrary relation
of the form b  f (a) . Then (2) becomes
 ( x, y, z, a, f (a))  0.........(3)
Differentiating (2) with respect to a,
 

f (a)  0..........(4)
a b
The eliminant of (3) and (4) if exists,
is called general solution
Standard types of first order equations
TYPE-I
The Partial Differential equation of the form
f ( p, q )  0
has solution
z  ax  by  c
with f (a, b)  0
TYPE-II
The Partial Differential Equation of the form
z  px  qy  f ( p, q) is called Clairaut’s form
of pde , it’s solution is given by
z  ax  by  f (a, b)
TYPE-III
If the pde is given by
f ( z , p, q )  0
then assume that
z   ( x  ay )
u  x  ay
z   (u )
z z u z
dz
p 
 .1 
x u x u
du
z z u z
dz
q 
 .a  a
y u y u
du

The given pde can be written as
dz dz
f ( z, , a )  0.And also this can
dx dy
be integrated to get solution
TYPE-IV
The pde of the form f ( x, p)  g ( y, q) can be
solved by assuming
f ( x, p )  g ( y , q )  a
f ( x, p )  a  p   ( x, a )
g ( y, q )  a  q   ( y, a )
z
z
dz 
dx  dy
x
y
dz   ( x, a )dx   ( y, a )dy
Integrate the above equation to get solution
SOLVED PROBLEMS
2
p
 q  1 and find the complete
1.Solve the pde
and singular solutions
Solution
Complete solution is given by
z  ax  by  c
with
a b 1
2
 b  a 1
2
z  ax  (a  1) y  c
2
d.w.r.to. a and c then
z
 x  2 ay
a
z
 1  0 Which is not possible
c
Hence there is no singular solution
2.Solve the pde pq  p  q  0and find the
complete, general and singular solutions
Solution
The complete solution is given by
z  ax  by  c
with
ab  a  b  0
b
a
b 1
b
z 
x  by  c.......(1)
b 1
z
1

x y 0
2
b
b  1
z
 1  0 no singular solution
c
To get general solution assume that
c  g (b)
From eq (1)
b
z 
x  by  g (b).......( 2)
b 1
z
1


x

y

g
(b).......(3)
2
c
b  1
Eliminate from (2) and (3) to get general
solution
3.Solve the pde z  px  qy  1  p  q
and find the complete and singular solutions
2
Solution
The pde
z  px  qy  1  p  q
2
is in Clairaut’s form
2
2
complete solution of (1) is
z  ax  by  1  a  b .......(2)
2
2
d.w.r.to “a” and “b”
z
a

 x
 0
2
2
a
1 a  b

........(
3
)

z
b
 y
 0 
2
2
b
1 a  b

From (3)
2
2
a
b
2
x 
,y 
2
2
2
2
1 a  b
1 a  b
2
2
a b
2
2
x y 
2
2
1 a  b
1
2
2


1

(
x

y
)
2
2
1 a  b
2
ax 
by 
a
2
1 a  b
2
b
2
1 a  b
2
2
2
0
0
ax  by  1  a  b 
2
z
1
1
2
1 a  b
2
2
0
 0  z  1 (x  y )
2
2
2
1  a2  b2
2
2
2
 x  y  z  1 is required singular solution
4.Solve the pde (1  x) p  (2  y )q  3  z
Solution
pde (1 
x) p  (2  y )q  3  z
z  px  qy  (3  p  2q )
Complete solution of above pde is
z  ax  by  (3  a  2b)
5.Solve the pde
Solution
Assume that
p q  z
2
2
z   ( x  ay )
u  x  ay
z   (u )
z z u z
dz
p 
 .1 
x u x u
du
z z u z
dz
q 
 .a  a
y u y u
du
From given pde
2
2
 dz 
2  dz 
2
p q  z  a    z
 du 
 du 
2
2
2
z
 dz 
  
2
 du  1  a
z
dz
1
 dz 


du
 
2
2
z
 du  1  a
1 a
Integrating on both sides
2
z 
2
z 
u
1 a2
x  ay
1 a2
b
b
6. Solve the pde
zpq  p  q
Solution
Assume q  ap
Substituting in given equation
zpap  p  ap
1 a
1 a
p
,q 
az
z
z
z
dz 
dx 
dy
x
y
1 a
1 a
 dz 
dx 
dy
az
z
zadz  (1  a )( dx  ady )
Integrating on both sides
a 2
z  (1  a )( x  ay )  b
2
7.Solve pde pq  xy
z z
(or) ( )( )  xy
x y
Solution
p
q

x
y
Assume that
p
y

a
x
q
y
 p  ax, q 
a
y
dz  pdx  qdy  axdx  dy
a
Integrating on both sides
2
2
x
y
za

b
2
2a
8. Solve the equation
p q  x y
2
2
Solution
p x  yq  a
2
2
p  a  x, q  y  a
dz  pdx  qdy  a  x dx  y  a dy
integrating
3
2
3
2
2
z  (a  x)  ( y  a )  b
3
Equations reducible to the standard forms
m
n
(
y
q) occur in the pde as in
(
x
p
)
(i)If
and
m
n
Or
in
F
(
z
,
x
p
,
y
q)  0
F ( x p, y q)  0
m
Case (a)
n
1 m
Put x  X and y
if m  1 ; n  1
1 n
Y
z z X z
m
p 

(1  m) x
x X x X
z z Y z
n
q 
 (1  n) y
y Y x Y
z
x p
(1  m)  P(1  m)
X
z
n
y q
(1  n)  Q(1  n)
Y
m
where
Then
z
z
 P,
Q
X
Y
F ( x m p, y n q)  0 reduces to F ( P, Q)  0
Similarly F ( z, x
m
p, y q)  0 reduces
n
to F ( z, P, Q)  0
case(b)
If m  1 or
n 1
put log x  X , log y  Y
z
p
X
z
q
Y
(ii)If
k
( z p)
and
Or in
(z
1
 px  P
x
1
 qy  Q
y
k
q) occur in pde as in
f1 ( x, z p)  f 2 ( y, z q)
k
k
k
k
F ( z p, z q)
Case(a) Put
z z

x Z
z z

y Z
z
1 k
 Z if
k  1
Z k
 `1 Z
k
 `1
 z (1  k )
 z p  (1  k ) P
x
x
Z k
 `1 Z
k
 `1
 z (1  k )
 z q  (1  k ) Q
y
y
Z
Z
 P,
Q
where
x
y
Given pde reduces to
F ( P, Q) and
f1 ( x, P)  f 2 ( y, Q)
Case(b) if k  1
z z

x Z
z z

y Z
log z  Z
Z
Z
1
z z pP
x
x
Z
Z
1
 z  z qQ
y
y
Solved Problems
1.Solve
p x q y  z
2
4
2
2
4
2
2




px
qy
Solution 
 z    z   1.......(1)

 

2
2
m  2, n  2
k  1
1
x X
1
y Y
log z  Z
z z Z X
 2 Z
2
p 
  zx
  zx P
x Z X x
X
z z Z Y
 2 Z
2
q 
  zy
  zy Q
y Z Y y
Y
where
Z
Z
 P,
Q
X
Y
2
2
px
qy
  P,
 Q
z
z
(1)becomes
 P    Q
2
2
1
P  Q 1
2
2
 Z  aX  bY  c
a  b  1, b 
2
2
1 a
2
log z  ax  1  a y  c
2
2
2
2. Solve the pde
p  q  z (x  y )
2
2
2
2
2
SOLUTION



2
2
p q
2
2
     ( x  y ).....(1)
z z
k  1 log z  Z
z z Z
Z
1

z
z pP
x Z x
x
z z Z
Z
1

z
 z qQ
y Z y
y
Eq(1) becomes
P  Q  ( x  y ).....(2)
2
2
2
2
P  x  y Q  a
2
2
2
2
2
a
x 2
1  x 
2
log z  sinh    (a  x ) 
2
a 2
2
y (y  a ) a
1  y 
 cosh    b
2
2
a
2
2
2
Lagrange’s Linear Equation
Def: The linear partial differenfial equation
of first order is called as Lagrange’s linear Equation.
This eq is of the form
Where
P, Q
and
Pp  Qq  R
R are functions x,y and z
The general solution of the partial differential
equation Pp  Qq  R
is F (u, v)  0
Where F is arbitrary function of u( x, y, z)  c1
and v( x, y, z)  c2
Here u  c1 and v  c2 are independent solutions
dx dy dz


of the auxilary equations
P
Q
R
Solved problems
2
2
x
p

y
q  ( x  y) z
1.Find the general solution of
Solution
dx dy
auxilary equations are 2  2 
x
y
dz
( x  y) z
dx dy
 2
2
x
y

1
u x y
Integrating on both sides
1
 c
1
dx  dy
dz

2
2
x y
( x  y) z
d ( x  y)
dz

( x  y )( x  y ) ( x  y ) z
d ( x  y ) dz Integrating on both sides

( x  y)
z
log( x  y )  log z  log c2
v  ( x  y) z
1
 c2
F (u, v)  0
The general solution is given by
1
1
1
F ( x  y , ( x  y) z )  0
2.solve x ( y  z )  y ( z  x)q  z ( x  y)
solution Auxiliary equations are given by
2
2
2
dx
dy
dz
 2
 2
2
x ( y  z ) y ( z  x) z ( x  y )
dy
dx
dz
2
2
2
y
x

 z
( y  z ) ( z  x) ( x  y )
dx dy dz
 2 2
2
x
y
z
( y  z )  ( z  x)  ( x  y )
dx dy dz
 2  2 0
2
x
y
z
Integrating on both sides
1
1
1
u


a
x
y
z
1
1
1
x dx
y dy
z dz


x( y  z ) y ( z  x) z ( x  y )
1
1
1
x dx  y dy  z dz
x( y  z )  y ( z  x)  z ( x  y )
dx dy dz


 0 Integrating on both sides
x
y
z
v  xyz  b
The general solution is given by
1
1
1
F ( x  y  z , xyz)  0
HOMOGENEOUS LINEAR PDE WITH
CONSTANT COEFFICIENTS
Equations in which partial derivatives
occurring are all of same order (with degree
one ) and the coefficients are constants ,such
equations are called homogeneous linear PDE
with constant coefficient
z
z
z
z
 a1 n1  a2 n2 2  ........an n  F ( x, y)
n
x
x y
x y
y
n
n
n
n


Assume that D  , D  .
x
y
th
then n order linear homogeneous equation is
given by
( D  a1D D  a2 D D  .........  an D ) z  F ( x, y )
n
n 1
n2
2
or
f ( D, D) z  F ( x, y ).........(1)
n
The complete solution of equation (1) consists
of two parts ,the complementary function and
particular integral.
The complementary function is complete
solution of equation of f ( D, D) z  0
Rules to find complementary function
Consider the equation
 z
 z
 z
 k1
 k2 2  0
2
x
xy
y
2
2
or
2
2


( D  k1DD  k2 D ) z  0.............(2)
2
The auxiliary equation for (A.E) is given by
2


D  k1DD  k2 D  0
2
And by giving
D  m, D  1
The A.E becomes
m  k1m  k2  0....(3)
2
Case 1
If the equation(3) has two distinct roots
The complete solution of (2) is given by
z  f1 ( y  m1x)  f 2 ( y  m2 x)
m1 , m2
Case 2
If the equation(3) has two equal roots i.e
m1  m2
The complete solution of (2) is given by
z  f1 ( y  m1 x)  xf2 ( y  m1 x)
Rules to find the particular Integral
Consider the equation
( D  k1DD  k2 D ) z  F ( x, y)
2
2
f ( D, D) z  F ( x, y )
F ( x, y )
Particular Integral (P.I) 
f ( D, D)
Case 1 If F ( x, y )  e
then P.I=
If
ax by
1
axby
e
f ( D, D)
1
ax by

e
, f ( a, b)  0
f ( a, b)
a
f (a, b)  0 and ( D  D) is
b
factor of f ( D, D) then
P.I
ax by
 xe
a
If f (a, b)  0 and ( D  D) 2 is
b

f
(
D
,
D
)
factor of
2
then
Case 2
x axby
e
P.I 
2
F ( x, y )  sin( mx  ny )or cos( mx  ny )
P.I
sin( mx  ny)
sin( mx  ny)


2
2
2
2
f ( D , DD, D ) f (m ,mn,n )
Case 3
P.I
F ( x, y)  x y
m
n
1
1 m n
m n

x y   f ( D, D) x y
f ( D, D)
Expand  f ( D, D) 1 in ascending powers of
m n

D
and operating on x y term by term.
D or
Case 4 when F ( x, y ) is any function of x
and y.
1
F ( x, y )
P.I=
f ( D, D)
1
F ( x, y )   F ( x, c  mx)dx
D  mD
( D  mD) is factor of
Here
Where ‘c’ is replaced by
f ( D, D)
( y  mx) after integration
Solved problems
1.Find the solution of pde
3
2
2


( D  D  3DD  3D D) z  0
3
Solution
The Auxiliary equation is given by
Solution
The Auxiliary equation is given by
m  1  3m  3m  0
3
By taking
2
D  m, D  1
 m  1,1,1.
2
Complete solution  f1 ( y  x)  xf2 ( y  x)  x f 3 ( y  x)
2. Solve the pde ( D3  4D 2 D  5DD) z  0
Solution
The Auxiliary equation is given by
m  4m  5m  0
 m  0,1,5
z  f1 ( y )  f 2 ( y  x)  f 3 ( y  5 x)
3
2
3. Solve the pde ( D 2  D2 ) z  0
Solution
the A.E is given by
m 1  0
2
m  i
 z  f1 ( y  ix)  f 2 ( y  ix)
4. Find the solution of pde
( D  3DD  4D ) z  e
2
2
2 x4 y
Solution
Complete solution =
Complementary Function + Particular Integral
The A.E is given by
m  3m  4  0
2
m  4,1
C.F  1 ( y  x)  2 ( y  4x)
2 x4 y
2 x4 y
e
e
P.I  2

2
D  3DD  4 D
 36
Complete solution
 C.F  P.I
 1 ( y  x)  2 ( y  4 x) 
e
2 x4 y
36
5.Solve
( D  3DD  2D ) z  e
3
3
2 x y
e
x y
Solution
A.E  m  3m  2
 m  1,1,2.
C.F  1 ( y  x)  x2 ( y  x)  3 ( y  2 x)
3
2 x y
2 x y
e
e
P.I1  3

2
3
2
2
D  3DD  2D ( D  D) ( D  2D)
2 x y
2 x y
e
xe
P.I1 

2
( D  D) ( D  2D)
9
x y
x y
e
e
P.I 2  3

2
3
2
2
D  3DD  2 D ( D  D) ( D  2 D)
2
x x y
 P.I 2  e
6
z  C.F  P.I1  P.I 2
2 x y
2
xe
x x y
z  1 ( y  x)  x2 ( y  x)  3 ( y  2 x) 
 e
9
6
6.Solve ( D 2  DD) z  cos x cos 2 y
Solution
1
( D  DD) z  cos( x  2 y )  cos( x  2 y )
2
2
A.E  m  m  0
2
m  0,1
C.F  1 ( y  x)  2 ( y )
cos( x  2 y) cos( x  2 y)
P.I1  2

 cos( x  2 y)
( D  DD) ((1)  (2))
cos( x  2 y) cos( x  2 y) cos( x  2 y)
P.I 2  2


( D  DD) (( 1)  (2))
3
1
z  1 ( y  x)  2 ( y  x)  cos( x  2 y )  cos( x  2 y )
3
7.Solve
2
2 2


( D  DD  6D ) z  x y
2
Solution A.E  m 2  m  6  0
m  2,3.
C.F  1 ( y  2x)  2 ( y  3x)
2
2
x y
P.I  2
2
D  DD  6 D
1
 2
D
  D
D
1    6 2
D
D


2
1
 2 2
 x y

2
2 2
  D
D   D
D  2 2
2
 D 1    6 2     6 2   x y
D  D
D  
  D

2
2

 2 2





D
D
D
2
 D 1  
 D  6 D2 
  D2  x y




2
2
2




2
x
y
2
x
2
x
2
2
2
 D x y  
 D  6 D2 
  D2 




3
4
4




2
x
y
2
x
2
x
2
2
2
 D x y  
 3  6 12 
  12 




3
4


2
x
y
2
x
2
2
2
 D x y 
8

3
12 

 x4 y2
2 x5 y
2x6 




12
60
90


7.Solve ( D 2  5DD  6D2 ) z  y sin x
Solution
A.E is
m  5m  6  0
2
m  3, m  2.
C.F  1 ( y  3x)  2 ( y  2x)
P.I 

y sin x
y sin x

2
D  5 DD  6 D
( D  3D)( D  2 D)
2
 y sin x 
1
( D  3D)  ( D  2 D) 
1
(a  2 x) sin xdx
( D  3D) 
1
 a cos x  2( x cos x  sin x)

( D  3D)
1
2 x cos x  2 sin x  ( y  2 x) cos x

( D  3D)

y sin x
y sin x
P.I  2

2
D  5 DD  6 D
( D  3D)( D  2 D)
 y sin x 
1





( D  3D )  ( D  2 D ) 
here
a  y  2 x 
1

( a  2 x) sin xdx

( D  3D)
1
 a cos x  2( x cos x  sin x)

( D  3D)
1
2 x cos x  2 sin x  ( y  2 x) cos x

( D  3D)
1
 y cos x  2 sin x

( D  3D)
  ((b  3x) cos x  2 sin x)dx
here
b  y  3x 
 b sin x  2 cos x  3( x sin x  cos x)
 ( y  3x) sin x  2 cos x  3( x sin x  cos x)
 5 cos x  y sin x
Non Homogeneous Linear PDES
If in the equation
f ( D, D) z  F ( x, y )............(1)
the polynomial expression f ( D, D) is not
homogeneous, then (1) is a non- homogeneous
linear partial differential equation
Ex
2
2 x 3 y


( D  3D  D  4D ) z  e
2
Complete Solution
= Complementary Function + Particular Integral
To find C.F., factorize f ( D, D)
into factors of the form ( D  mD  c)
If the non homogeneous equation is of the form
( D  m1 D  c1 )( D  m2 D  c2 ) z  F ( x, y )
C.F  e  ( y  m1 x)  e  ( y  m2 x)
c1 x
1.Solve
c2 x
( D  DD  D) z  x
2
2
Solution
2

f ( D, D )  D  DD  D  D( D  D  1)
C.F  e  x1 ( y  x)  2 ( y)
1
x
1  ( D  1)  2
P.I  2
 2 1 
x
D  DD  D D 
D 
2
1
 2
D
 2  ( D  1)  2  ( D  1)  2

x

x

......
x  




 D 
 D 


1
 2
D
 2 x x  x
x
x 

x      

3 12   3.4 3.4.5 12.5.6 

2
3
4
4
5
6
2.Solve ( D  D  1)( D  2 D  3) z  4
Solution
4
z  e 1 ( y  x)  e 1 ( y  2 x) 
3
x
3x
Related documents