Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
PARTIAL DIFFERENTIAL EQUATIONS Formation of Partial Differential equations Partial Differential Equation can be formed either by elimination of arbitrary constants or by the elimination of arbitrary functions from a relation involving three or more variables . SOLVED PROBLEMS 1.Eliminate two arbitrary constants a and b from 2 2 2 2 x a y b z R here R is known constant . (OR) Find the differential equation of all spheres of fixed radius having their centers in x y- plane. solution x a y b 2 2 z R .......1 2 2 Differentiating both sides with respect to x and y z 2z 2( x a ) x z 2z 2 ( y b ) y z z p, q x y x a pz , y b qz By substituting all these values in (1) 2 p z 2 z 2 q z 2 p2 2 z 2 R 2 R2 q2 1 or z2 R2 z x 2 z y 2 1 2. Find the partial Differential Equation by eliminating 2 2 z f ( x y ) arbitrary functions from SOLUTION z f ( x y )..........(1) d .w.r.to.xandy 2 2 z ' 2 2 f ( x y ) 2 x......(2) x z ' 2 2 f ( x y ) 2 y......(3) y By ( 2) (3) z x x y z y p x py qx 0 q y 3.Find Partial Differential Equation by eliminating two arbitrary functions from z yf ( x) xg( y ) SOLUTION z yf ( x) xg( y )......(1) Differentiating both sides with respect to x and y z yf ( x) g ( y )........( 2) x z f ( x) xg ( y )........(3) y Again d . w .r. to x and yin equation (2)and(3) z f ( x) g ( y ) xy 2 x (2) y (3)......to...get z z x y x y xg( y ) yf ( x) xy( f ( x) g ( y )) z xy f g z z z x y z xy x y xy 2 Different Integrals of Partial Differential Equation 1. Complete Integral (solution) z z Let F ( x, y, z, , ) F ( x, y, z, p, q) 0......(1) x y be the Partial Differential Equation. The complete integral of equation (1) is given by ( x, y, z , a, b) 0..........(2) 2. Particular solution A solution obtained by giving particular values to the arbitrary constants in a complete integral is called particular solution . 3.Singular solution The eliminant of a , b between ( x, y , z , a , b ) 0 0, 0 a b when it exists , is called singular solution 4. General solution In equation (2) assume an arbitrary relation of the form b f (a) . Then (2) becomes ( x, y, z, a, f (a)) 0.........(3) Differentiating (2) with respect to a, f (a) 0..........(4) a b The eliminant of (3) and (4) if exists, is called general solution Standard types of first order equations TYPE-I The Partial Differential equation of the form f ( p, q ) 0 has solution z ax by c with f (a, b) 0 TYPE-II The Partial Differential Equation of the form z px qy f ( p, q) is called Clairaut’s form of pde , it’s solution is given by z ax by f (a, b) TYPE-III If the pde is given by f ( z , p, q ) 0 then assume that z ( x ay ) u x ay z (u ) z z u z dz p .1 x u x u du z z u z dz q .a a y u y u du The given pde can be written as dz dz f ( z, , a ) 0.And also this can dx dy be integrated to get solution TYPE-IV The pde of the form f ( x, p) g ( y, q) can be solved by assuming f ( x, p ) g ( y , q ) a f ( x, p ) a p ( x, a ) g ( y, q ) a q ( y, a ) z z dz dx dy x y dz ( x, a )dx ( y, a )dy Integrate the above equation to get solution SOLVED PROBLEMS 2 p q 1 and find the complete 1.Solve the pde and singular solutions Solution Complete solution is given by z ax by c with a b 1 2 b a 1 2 z ax (a 1) y c 2 d.w.r.to. a and c then z x 2 ay a z 1 0 Which is not possible c Hence there is no singular solution 2.Solve the pde pq p q 0and find the complete, general and singular solutions Solution The complete solution is given by z ax by c with ab a b 0 b a b 1 b z x by c.......(1) b 1 z 1 x y 0 2 b b 1 z 1 0 no singular solution c To get general solution assume that c g (b) From eq (1) b z x by g (b).......( 2) b 1 z 1 x y g (b).......(3) 2 c b 1 Eliminate from (2) and (3) to get general solution 3.Solve the pde z px qy 1 p q and find the complete and singular solutions 2 Solution The pde z px qy 1 p q 2 is in Clairaut’s form 2 2 complete solution of (1) is z ax by 1 a b .......(2) 2 2 d.w.r.to “a” and “b” z a x 0 2 2 a 1 a b ........( 3 ) z b y 0 2 2 b 1 a b From (3) 2 2 a b 2 x ,y 2 2 2 2 1 a b 1 a b 2 2 a b 2 2 x y 2 2 1 a b 1 2 2 1 ( x y ) 2 2 1 a b 2 ax by a 2 1 a b 2 b 2 1 a b 2 2 2 0 0 ax by 1 a b 2 z 1 1 2 1 a b 2 2 0 0 z 1 (x y ) 2 2 2 1 a2 b2 2 2 2 x y z 1 is required singular solution 4.Solve the pde (1 x) p (2 y )q 3 z Solution pde (1 x) p (2 y )q 3 z z px qy (3 p 2q ) Complete solution of above pde is z ax by (3 a 2b) 5.Solve the pde Solution Assume that p q z 2 2 z ( x ay ) u x ay z (u ) z z u z dz p .1 x u x u du z z u z dz q .a a y u y u du From given pde 2 2 dz 2 dz 2 p q z a z du du 2 2 2 z dz 2 du 1 a z dz 1 dz du 2 2 z du 1 a 1 a Integrating on both sides 2 z 2 z u 1 a2 x ay 1 a2 b b 6. Solve the pde zpq p q Solution Assume q ap Substituting in given equation zpap p ap 1 a 1 a p ,q az z z z dz dx dy x y 1 a 1 a dz dx dy az z zadz (1 a )( dx ady ) Integrating on both sides a 2 z (1 a )( x ay ) b 2 7.Solve pde pq xy z z (or) ( )( ) xy x y Solution p q x y Assume that p y a x q y p ax, q a y dz pdx qdy axdx dy a Integrating on both sides 2 2 x y za b 2 2a 8. Solve the equation p q x y 2 2 Solution p x yq a 2 2 p a x, q y a dz pdx qdy a x dx y a dy integrating 3 2 3 2 2 z (a x) ( y a ) b 3 Equations reducible to the standard forms m n ( y q) occur in the pde as in ( x p ) (i)If and m n Or in F ( z , x p , y q) 0 F ( x p, y q) 0 m Case (a) n 1 m Put x X and y if m 1 ; n 1 1 n Y z z X z m p (1 m) x x X x X z z Y z n q (1 n) y y Y x Y z x p (1 m) P(1 m) X z n y q (1 n) Q(1 n) Y m where Then z z P, Q X Y F ( x m p, y n q) 0 reduces to F ( P, Q) 0 Similarly F ( z, x m p, y q) 0 reduces n to F ( z, P, Q) 0 case(b) If m 1 or n 1 put log x X , log y Y z p X z q Y (ii)If k ( z p) and Or in (z 1 px P x 1 qy Q y k q) occur in pde as in f1 ( x, z p) f 2 ( y, z q) k k k k F ( z p, z q) Case(a) Put z z x Z z z y Z z 1 k Z if k 1 Z k `1 Z k `1 z (1 k ) z p (1 k ) P x x Z k `1 Z k `1 z (1 k ) z q (1 k ) Q y y Z Z P, Q where x y Given pde reduces to F ( P, Q) and f1 ( x, P) f 2 ( y, Q) Case(b) if k 1 z z x Z z z y Z log z Z Z Z 1 z z pP x x Z Z 1 z z qQ y y Solved Problems 1.Solve p x q y z 2 4 2 2 4 2 2 px qy Solution z z 1.......(1) 2 2 m 2, n 2 k 1 1 x X 1 y Y log z Z z z Z X 2 Z 2 p zx zx P x Z X x X z z Z Y 2 Z 2 q zy zy Q y Z Y y Y where Z Z P, Q X Y 2 2 px qy P, Q z z (1)becomes P Q 2 2 1 P Q 1 2 2 Z aX bY c a b 1, b 2 2 1 a 2 log z ax 1 a y c 2 2 2 2. Solve the pde p q z (x y ) 2 2 2 2 2 SOLUTION 2 2 p q 2 2 ( x y ).....(1) z z k 1 log z Z z z Z Z 1 z z pP x Z x x z z Z Z 1 z z qQ y Z y y Eq(1) becomes P Q ( x y ).....(2) 2 2 2 2 P x y Q a 2 2 2 2 2 a x 2 1 x 2 log z sinh (a x ) 2 a 2 2 y (y a ) a 1 y cosh b 2 2 a 2 2 2 Lagrange’s Linear Equation Def: The linear partial differenfial equation of first order is called as Lagrange’s linear Equation. This eq is of the form Where P, Q and Pp Qq R R are functions x,y and z The general solution of the partial differential equation Pp Qq R is F (u, v) 0 Where F is arbitrary function of u( x, y, z) c1 and v( x, y, z) c2 Here u c1 and v c2 are independent solutions dx dy dz of the auxilary equations P Q R Solved problems 2 2 x p y q ( x y) z 1.Find the general solution of Solution dx dy auxilary equations are 2 2 x y dz ( x y) z dx dy 2 2 x y 1 u x y Integrating on both sides 1 c 1 dx dy dz 2 2 x y ( x y) z d ( x y) dz ( x y )( x y ) ( x y ) z d ( x y ) dz Integrating on both sides ( x y) z log( x y ) log z log c2 v ( x y) z 1 c2 F (u, v) 0 The general solution is given by 1 1 1 F ( x y , ( x y) z ) 0 2.solve x ( y z ) y ( z x)q z ( x y) solution Auxiliary equations are given by 2 2 2 dx dy dz 2 2 2 x ( y z ) y ( z x) z ( x y ) dy dx dz 2 2 2 y x z ( y z ) ( z x) ( x y ) dx dy dz 2 2 2 x y z ( y z ) ( z x) ( x y ) dx dy dz 2 2 0 2 x y z Integrating on both sides 1 1 1 u a x y z 1 1 1 x dx y dy z dz x( y z ) y ( z x) z ( x y ) 1 1 1 x dx y dy z dz x( y z ) y ( z x) z ( x y ) dx dy dz 0 Integrating on both sides x y z v xyz b The general solution is given by 1 1 1 F ( x y z , xyz) 0 HOMOGENEOUS LINEAR PDE WITH CONSTANT COEFFICIENTS Equations in which partial derivatives occurring are all of same order (with degree one ) and the coefficients are constants ,such equations are called homogeneous linear PDE with constant coefficient z z z z a1 n1 a2 n2 2 ........an n F ( x, y) n x x y x y y n n n n Assume that D , D . x y th then n order linear homogeneous equation is given by ( D a1D D a2 D D ......... an D ) z F ( x, y ) n n 1 n2 2 or f ( D, D) z F ( x, y ).........(1) n The complete solution of equation (1) consists of two parts ,the complementary function and particular integral. The complementary function is complete solution of equation of f ( D, D) z 0 Rules to find complementary function Consider the equation z z z k1 k2 2 0 2 x xy y 2 2 or 2 2 ( D k1DD k2 D ) z 0.............(2) 2 The auxiliary equation for (A.E) is given by 2 D k1DD k2 D 0 2 And by giving D m, D 1 The A.E becomes m k1m k2 0....(3) 2 Case 1 If the equation(3) has two distinct roots The complete solution of (2) is given by z f1 ( y m1x) f 2 ( y m2 x) m1 , m2 Case 2 If the equation(3) has two equal roots i.e m1 m2 The complete solution of (2) is given by z f1 ( y m1 x) xf2 ( y m1 x) Rules to find the particular Integral Consider the equation ( D k1DD k2 D ) z F ( x, y) 2 2 f ( D, D) z F ( x, y ) F ( x, y ) Particular Integral (P.I) f ( D, D) Case 1 If F ( x, y ) e then P.I= If ax by 1 axby e f ( D, D) 1 ax by e , f ( a, b) 0 f ( a, b) a f (a, b) 0 and ( D D) is b factor of f ( D, D) then P.I ax by xe a If f (a, b) 0 and ( D D) 2 is b f ( D , D ) factor of 2 then Case 2 x axby e P.I 2 F ( x, y ) sin( mx ny )or cos( mx ny ) P.I sin( mx ny) sin( mx ny) 2 2 2 2 f ( D , DD, D ) f (m ,mn,n ) Case 3 P.I F ( x, y) x y m n 1 1 m n m n x y f ( D, D) x y f ( D, D) Expand f ( D, D) 1 in ascending powers of m n D and operating on x y term by term. D or Case 4 when F ( x, y ) is any function of x and y. 1 F ( x, y ) P.I= f ( D, D) 1 F ( x, y ) F ( x, c mx)dx D mD ( D mD) is factor of Here Where ‘c’ is replaced by f ( D, D) ( y mx) after integration Solved problems 1.Find the solution of pde 3 2 2 ( D D 3DD 3D D) z 0 3 Solution The Auxiliary equation is given by Solution The Auxiliary equation is given by m 1 3m 3m 0 3 By taking 2 D m, D 1 m 1,1,1. 2 Complete solution f1 ( y x) xf2 ( y x) x f 3 ( y x) 2. Solve the pde ( D3 4D 2 D 5DD) z 0 Solution The Auxiliary equation is given by m 4m 5m 0 m 0,1,5 z f1 ( y ) f 2 ( y x) f 3 ( y 5 x) 3 2 3. Solve the pde ( D 2 D2 ) z 0 Solution the A.E is given by m 1 0 2 m i z f1 ( y ix) f 2 ( y ix) 4. Find the solution of pde ( D 3DD 4D ) z e 2 2 2 x4 y Solution Complete solution = Complementary Function + Particular Integral The A.E is given by m 3m 4 0 2 m 4,1 C.F 1 ( y x) 2 ( y 4x) 2 x4 y 2 x4 y e e P.I 2 2 D 3DD 4 D 36 Complete solution C.F P.I 1 ( y x) 2 ( y 4 x) e 2 x4 y 36 5.Solve ( D 3DD 2D ) z e 3 3 2 x y e x y Solution A.E m 3m 2 m 1,1,2. C.F 1 ( y x) x2 ( y x) 3 ( y 2 x) 3 2 x y 2 x y e e P.I1 3 2 3 2 2 D 3DD 2D ( D D) ( D 2D) 2 x y 2 x y e xe P.I1 2 ( D D) ( D 2D) 9 x y x y e e P.I 2 3 2 3 2 2 D 3DD 2 D ( D D) ( D 2 D) 2 x x y P.I 2 e 6 z C.F P.I1 P.I 2 2 x y 2 xe x x y z 1 ( y x) x2 ( y x) 3 ( y 2 x) e 9 6 6.Solve ( D 2 DD) z cos x cos 2 y Solution 1 ( D DD) z cos( x 2 y ) cos( x 2 y ) 2 2 A.E m m 0 2 m 0,1 C.F 1 ( y x) 2 ( y ) cos( x 2 y) cos( x 2 y) P.I1 2 cos( x 2 y) ( D DD) ((1) (2)) cos( x 2 y) cos( x 2 y) cos( x 2 y) P.I 2 2 ( D DD) (( 1) (2)) 3 1 z 1 ( y x) 2 ( y x) cos( x 2 y ) cos( x 2 y ) 3 7.Solve 2 2 2 ( D DD 6D ) z x y 2 Solution A.E m 2 m 6 0 m 2,3. C.F 1 ( y 2x) 2 ( y 3x) 2 2 x y P.I 2 2 D DD 6 D 1 2 D D D 1 6 2 D D 2 1 2 2 x y 2 2 2 D D D D 2 2 2 D 1 6 2 6 2 x y D D D D 2 2 2 2 D D D 2 D 1 D 6 D2 D2 x y 2 2 2 2 x y 2 x 2 x 2 2 2 D x y D 6 D2 D2 3 4 4 2 x y 2 x 2 x 2 2 2 D x y 3 6 12 12 3 4 2 x y 2 x 2 2 2 D x y 8 3 12 x4 y2 2 x5 y 2x6 12 60 90 7.Solve ( D 2 5DD 6D2 ) z y sin x Solution A.E is m 5m 6 0 2 m 3, m 2. C.F 1 ( y 3x) 2 ( y 2x) P.I y sin x y sin x 2 D 5 DD 6 D ( D 3D)( D 2 D) 2 y sin x 1 ( D 3D) ( D 2 D) 1 (a 2 x) sin xdx ( D 3D) 1 a cos x 2( x cos x sin x) ( D 3D) 1 2 x cos x 2 sin x ( y 2 x) cos x ( D 3D) y sin x y sin x P.I 2 2 D 5 DD 6 D ( D 3D)( D 2 D) y sin x 1 ( D 3D ) ( D 2 D ) here a y 2 x 1 ( a 2 x) sin xdx ( D 3D) 1 a cos x 2( x cos x sin x) ( D 3D) 1 2 x cos x 2 sin x ( y 2 x) cos x ( D 3D) 1 y cos x 2 sin x ( D 3D) ((b 3x) cos x 2 sin x)dx here b y 3x b sin x 2 cos x 3( x sin x cos x) ( y 3x) sin x 2 cos x 3( x sin x cos x) 5 cos x y sin x Non Homogeneous Linear PDES If in the equation f ( D, D) z F ( x, y )............(1) the polynomial expression f ( D, D) is not homogeneous, then (1) is a non- homogeneous linear partial differential equation Ex 2 2 x 3 y ( D 3D D 4D ) z e 2 Complete Solution = Complementary Function + Particular Integral To find C.F., factorize f ( D, D) into factors of the form ( D mD c) If the non homogeneous equation is of the form ( D m1 D c1 )( D m2 D c2 ) z F ( x, y ) C.F e ( y m1 x) e ( y m2 x) c1 x 1.Solve c2 x ( D DD D) z x 2 2 Solution 2 f ( D, D ) D DD D D( D D 1) C.F e x1 ( y x) 2 ( y) 1 x 1 ( D 1) 2 P.I 2 2 1 x D DD D D D 2 1 2 D 2 ( D 1) 2 ( D 1) 2 x x ...... x D D 1 2 D 2 x x x x x x 3 12 3.4 3.4.5 12.5.6 2 3 4 4 5 6 2.Solve ( D D 1)( D 2 D 3) z 4 Solution 4 z e 1 ( y x) e 1 ( y 2 x) 3 x 3x