Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Warm Up Introduction to Polynomials and Adding and Subtracting Polynomials Classifying Polynomials: We classify polynomials based on the number of _________. terms What is a monomial? A polynomial with only 1 term. What is a binomial? A polynomial with 2 terms. What is a trinomial? A polynomial with 3 terms. When do we use the term polynomial? We use the term polynomial to describe any expression which contains some combination of variables and numbers. What is a term? Terms are made up of numbers, variables or the product and/or quotient of some combination of numbers and variables. EXAMPLE: 2x is a term. (the product of a # and variable) 2x/3 is a term. (the quotient of a # and variable) + Terms are separated by ________ and ________ signs! - Classify each of the polynomials 1. 2. 3. 4. 3x2y + 3x + 4y Trinomial 2x2y4z Monomial 2xy2 + 3x2y + 9x Trinomial 5x2y + 2xy3 Binomial Calculating the degree of a polynomial.. If it is a single variable term, find the term with the largest exponent. 5x3 + 9x2 + x1 Remember the This is a 3rd degree polynomial. understood 1!!! If it is a multi-variable term, you add the exponents of all of the variables. 13+9 4x2y1+ 2xy This is a 4th degree polynomial (3+1=4). Don’t forget the understood 1’s!!!! Calculate the degree of the polynomial… 1. 6x2 + 4x + 4x3 + x 3rd degree 2 4 2 4 2. 21x y + 12x y + 2xy 6th degree 2 3 3. 3x + 2y 3rd degree Writing a polynomial in standard form… • Standard form is in descending order of the x variable. 1. 2xy3 + 3x2y + x3 X3 + 3x2y + 2xy3 2. 3xy2 + 3x3 + 2x2y 3 2 2 3x + 2x y + 3xy Adding and Subtracting Polynomials… is nothing more than combining like terms. Remember you can do this vertically or horizontally. 1. (2x2 - 3x + 3) + (4x2 + 5x - 9) 6x2 + 2x -6 2. (3x2 - 9x - 5) - (-2x2 - 4x + 5) 2 5x - 5x - 10 5(x2 - x - 2) Ex 1 (x2 + 3x + 4) + (-2x2 + 10x - 5) Combine LIKE terms x2 + 3x + 4 -2x2 + 10x - 5 -1x2 + 13x - 1 Final Answer Ex 2. (4b3 - 2b) + (b3 + 6b2 + 3b - 7) 4b3 + 0b2 - 2b + 0 b3 + 6b2 + 3b - 7 5b3 + 6b2 + 1b - 7 Final Answer Ex 3. (12y2 - 8y + 4) - (9y2 + 5y + 1) Don’t forget to Distribute the -1!! (12y2 - 8y + 4) - 1(9y2 + 5y + 1) (12y2 - 8y + 4) - 9y2 - 5y - 1 12y2 - 8y + 4 - 9y2 - 5y - 1 3y2 - 13y + 3 Final Answer Ex 4. (3a3 + 10a - 15) - (-a3 + 2a2 + 6a - 9) (3a3 + 10a - 15) - 1(-a3 + 2a2 + 6a - 9) 3a3 + 10a - 15 + a3 - 2a2 - 6a + 9 3a3 + 0a2 + 10a - 15 +a3 - 2a2 - 6a + 9 4a3 - 2a2 + 4a - 6 Final Answer POLYNOMIAL MULTIPLICATION (2x - 3)(x + 5) 3 methods a. Distribute (2x - 3)(x + 5) *4 multiplications 2x2 + 10x - 3x - 15 (then combine like terms) 2x2 + 10x - 3x - 15 2x2 + 7x - 15 Final Answer b. 3rd grade style 2x - 3 x+5 +10x - 15 2x2 - 3x + 0 2x2 + 7x - 15 Final Answer! c. Box Method 2x x 2x2 + 5 +10x -3 -3x -15 2x2 + 7x - 15 Final Answer Ex 5. (4x + 7)(3x + 7) a.) 12x2 + 28x + 21x + 49 12x2 + 49x + 49 b.) 4x + 7 3x + 7 +28x + 49 12x2 + 21x + 0 12x2 + 49x + 49 c.) 4x + 7 3x 12x2 +21x + 7 +28x + 49 Ex 6. (x - 1)(x2 - 4x + 6) a. x3 - 4x2 + 6x - 1x2 + 4x - 6 x3 - 5x2 + 10x - 6 b. x2 - 4x + 6 x -1 -1x2 + 4x - 6 1x3 -4x2 + 6x + 0 x3 - 5x2 + 10x - 6 c. x2 - 4x + 6 x x3 -4x2 +6x -1 -1x2 +4x - 6 x3 - 5x2 + 10x - 6 Ex 7. (2z2 + 3z - 4)(4z + 5) a. 8z3 + 10z2 + 12z2 + 15z - 16z - 20 8z3 + 22z2 - 1z - 20 2z2 + 3z - 4 4z + 5 +10z2 + 15z - 20 8z3 +12z2 - 16z + 0 8z3 + 22z2 - 1z - 20 b. c. 2z2 + 3z - 4 4z 8z3 +12z2 -16z +5 10z2 +15z - 20 Ex 8. (2a + 5)(2a - 5) a. 4a2 - 10a + 10a - 25 4a2 - 25 b. 2a + 5 2a - 5 -10a - 25 4a2 +10a + 0 4a2 - 2 5 c. 2a +5 2a 4a2 +10a -5 -10a -25 4a2 - 2 5 Ex 9. (3m + 4n)2 a. (3m + 4n)(3m + 4n) 9m2 + 12mn + 12mn + 16n2 9m2 + 24mn + 16n2 b. 3m + 4n c. 3m +4n 3m + 4n 3m 9m2 +1 2mn +12mn + 16n2 +4n +12mn +16n2 9m2 + 12mn + 0 9m2 + 24mn + 16n2 9m2 + 24mn + 16n2