Download 7_8 TROUT 09

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
7.8 Parallel and Perpendicular
• Goals:
To identify parallel, perpendicular lines and
write an equation of a line containing a
point and parallel or perpendicular to a line
“parallel”
Slope and Line relationships
• Parallel lines have the same exact slope
(“m”) and a different y-intercept (“b”).
• y = 2x +3 and y = 2x +11 are parallel.
• All vertical lines are parallel.
x = -5 and x = 9 are parallel.
To determine if two equations are
parallel, change the equation to its slope
intercept form (y = mx + b)
Determine if the lines are parallel
y  3x  1 and y  3x  7
Y
Determine if the lines are parallel
Y
y  3x  1 and y  3x  7
3x
3x
y  3x  7
Determine if the lines are parallel
y  3x  1 and y  3x  1
N
y  3x  1
Must have different
y-intercept
N
5 y  x  2 and y  2  5 x
Determine if the lines are parallel
1
2
y  x
5
5
y  5x  2
Determine if the lines are parallel
1
x  4 and x 
3
All vertical
lines are
parallel.
Y
Determine if the lines are parallel
N
2 y  x  11 and y  2  2 x
1
11
y
x
2
2
y  2x  2
Determine if the lines are parallel
Y
3x  y  5 and 5 y  15 x  10
 y  3x  5 5 y  15 x  10
y  3x  5
y  3x  2
Determine if the lines are parallel
N
2 x  3 y  6 and y  7  3x
y  3x  7
3 y  2 x  6
2
6
y
x
3
3
y  3x  7
Determine if the lines are parallel
Y
2 x  4 y  3 and 3x  6 y  8
1
3
y  x
2
4
1
4
y  x
2
3
Perpendicular
means “at right angles”
All three red
lines are
perpendicular
to the green line.
8
4
3
B
E
2
1
-6
-4
-2
2
4
6
-1
A
-2
-3
4

Slope of AB is _______
7
-4
F
-5
-6
7
Slope of EF is _______

4
8
Slope and Line relationships
• Parallel lines have the same exact slope
(“m”) and a different y-intercept (“b”).
• y = 2x +3 and y = 2x +11 are parallel.
• Perpendicular lines (): have the
opposite reciprocal slopes
1
• y = 2x + 3 and y = - x  6
2
are perpendicular.
 2  1 
      1
 1  2 
Determine if the lines are perpendicular:
9
7
y  x  1 and y   x  7
7
9
Y
Determine if the lines are perpendicular:
7
8
y  x  4 and y  x  7
8
7
N
One must be positive;
the other negative.
Determine if the lines are perpendicular:
1
y  4 x  5 and y   x  3
4
Y
1
4
is the reciprocal of
4
1
Determine if the lines are perpendicular:
1
y  x  2 and y  5 x  3
5
Y
Determine if the lines are perpendicular:
y  2 and x  3
Y
Determine if the lines are perpendicular:
3 y  9 x  3 and 6 y  2 x  6
6 y  2 x  6
y  3x  1
Y
2
6
y
x
6
6
Write an equation of a line given a
point and perpendicular to the line
Given: (0,6) and y-3x =4
1.) Find slope: Solve for y, y=3x + 4
m= 3
2.) Take the Perpendicular to the slope
m=-1/3
3.) Use your m and your point and plug it into a new
y=mx+b
m=-1/3 (0,6) 6=-1/3 (0) + b
4.) solve for b, 6 =b
5.) write your equation with m and b y=-1/3x +6
Write an equation of the line containing the
given point and parallel to the line
(0,2) 3y-x =0
-
Solve for y to find the slope y=1/3 x
A slope parallel to m =1/3 would be m=1/3
Use your slope and ordered pair to solve for b
(0,2) m =1/3
2=1/3(0) +b
2=b and m=1/3
4. Write the equation with m and b
Y=1/3x +2
Assignment:
Page 340
(2-30) even
Show solving for “y”
3 Corners
•
•
•
•
•
Go to the:
1.) parallel,
2.) perpendicular
3.)neither corner
You may want a pencil and paper
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
y  3x  1 and y  3x  7
1
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
y  3x  1 and y  3x  7
1
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
3
y  3x  1 and y  3x  1
Must have different
y-intercept
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
3
5 y  x  2 and y  2  5 x
1
2
y  5x  2
y  x
5
5
Product of slopes
must be negative 1
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
1
x  4 and x 
3
All vertical lines are
parallel.
1
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
2
2 y  x  11 and y  2  2 x
1
11
y
x
2
2
y  2x  2
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
2
2 x  5 y  4 and 5 x  2 y  10
5 y  2 x  4 2 y  5 x  10
2
4
y
x
5
5
5
10
y
x
2
2
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
3
2 x  3 y  6 and y  7  3x
y  3x  7
3 y  2 x  6
2
6
y
x
3
3
y  3x  7
Determine if the lines are parallel (1),
perpendicular (2), or neither (3)
1
2 x  4 y  3 and 3x  6 y  8
1
3
y  x
2
4
1
4
y  x
2
3
Related documents