Download Unit IXa: Trig III Solving More Difficult Trignometric Equations (8.5)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solving Trignometric
Equations
6.2
JMerrill, 2009
Solving an algebraic
equation
x  3x  4  0
( x  1)( x  4)  0
2
( x  1)  0 or ( x  4)  0
x  1
x4
Solving a Trigonometric
Equation Using Algebra
Solve 2sin   1  0 for 0    360
2
2sin   1  0
2
2sin   1
2
1
sin  
2
2
2
sin   
2
o
o
There are 4 solutions
because sin is positive
in 2 quadrants and
negative in 2 quadrants.
  45o ,135o ,225o ,315o
Solve
sin x  sin x  cos x
2
2
Hint: Make the words match
sin x  sin x  1  sin x
2
2
sin x  sin x  1  sin x  0
2
2
2sin x  sin x  1  0
2
Quadratic: Set = 0
Combine like terms
Factor—(same as 2x2-x-1)
(2sin x  1)(sin x  1)  0
1
sin x 
or sin x  1
2
x
 7 11
,
2 6
,
6
Solve
Solve sin x tan x  3sin x for 0  x  2
sin x tan x  3sin x  0
Round to nearest
hundredth
sin x(tan x  3)  0
sin x  0
or tan x  3
x  0,3.14
x  1.25,4.39
Where did these 2 answers
come from??? 
Solve
Solve 2sin  cos for 0    360
o
2sin  cos
cos
2
sin 
o
2  cot 
1
 tan 
2
  26.6 ,206.6
o
o
What You CANNOT Do
• You cannot divide both sides by a
common factor, if the factor cancels
out. You will lose a root…
Example
sin x tan x  3sin x
sin x tan x 3sin x

sin x
sin x
tan x  3
Common factor—
lost a root
2sin  cos
cos
2
sin 
2  cot 
1
 tan 
2
No common factor = OK
You Do
• Solve 2cos2 x  cos x  1  0 on 0  x  2
2cos x  1cos x  1  0
1
cos x  or cos x  1
2
 5
x ,
3 3
Check by graphing!
x
Related documents