Download Section 2.1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2. Matrix Algebra
2.1 Matrix Operations
j-th column
 
A  ai , j
 a11
 

  ai1

 
am1

 a1 j
 

aij

 amj
 a1n 

 
 ain 

  
 amn 
i-th row
Diagonal entries
Diagonal matrix : a square matrix
whose nondiagonal entries are zero.
Recall: Two matrices are equal

the matrices are the same size and
their corresponding entries are equal.
Theorem 1
Let A, B, and C be matrices of the same size, and let r and
s be scalars.
A B  B  A
( A  B)  C  A  ( B  C )
r ( A  B )  rA  rB
(r  s ) A  rA  sA
A0  A
r ( sA)  ( rs ) A
Example:
 1 0 2
A :  3 1 0
 4  2 1
 2  1 1
B :  2 1 0
 3 0 2
A B 
A B 
2B 
1
 A  3B 
2
A2 
Example:
 1


A :=  4


 -7
-2
-5
8
-3 


6


9
 1


 -7
C := 
 4


 0
-3
9
-6
0
5


-2 


8


0
AC 
AC 
2C 
1
 A  3C 
2
Matrix Multiplication
REVIEW
x1 
 
x 2 

Ax  a1 a 2 L a n 
 x1a1  x 2a 2 L  x n a n
 M
 
x n 
Recall:
1
1 3 2  1 1  3 1 

          
Ax  2
0 2 1 2210  0 2  4 

3 2 2
 
0 
 
3
 
2
 
2 
 
8 


Matrix Multiplication
If A is an m  n matrix and B is an n  p matrix
with columns b1,b2 ,L ,b p , then the product
AB is the m  p matrix whose columns are A b1,K ,Ab p

 
AB  A b1 b2 L b p  A b1 A b2 L A b p
Example: Let
Find AB 
1 2 
A  0  1
 4 5 
2 3 
B

1  2 

Row-Column Rule for Computing AB: If the product
AB is defined, then the entry in row i and column j of AB
is the sum of the products of corresponding entries
from row i of A and column j of B.
( AB) ij  ai1b1 j  ai 2b2 j    aipb pj    ainbnj
Example:
1 2 
 _______ _______ 
0  1  2 3   _______ _______ 

 1  2  

 4  2  5 1 _______ 
 4 5  


3x2
2x2
3x2
Properties of Matrix Multiplication
A( BC )  ( AB)C
A( B  C )  AB  AC
( B  C ) A  BA  CA
r ( AB)  (rA) B  A(rB ) for any scalar r
I m A  A  AI n for m  n matrix A
In general the followings are NOT true.
AB  BA
If AB  AC then B  C
If AB  0 then A  0 or B  0
Defn: Given an m×n matrix A, the transpose of A is
the n×m matrix, denoted by AT, whose columns are
formed from the corresponding rows of A.
A  (aij )  AT  (a ji )
 3 1 0
Example: Let A : 


1
2
4


What is AT ?
Rules related to transpose:
(A )  A
T T
( A  B)  A  B
T
T
T
(rA)T  rAT for any scalar r
( AB)  B A
T
T
T
Related documents