Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Section 2.5 REASON USING PROPERTIES FROM ALGEBRA ALGEBRAIC PROPERTIES Addition Property If a=b, then a+c=b+c If 2=2, then 2+1=2+1 Subtraction Property If a=b, then a-c=b-c If 2=2, then 2-1=2-1 Multiplication Property If a=b, then ac=bc If 2=2, then 2(3)= 2(3) ALGEBRAIC PROPERTIES Division Property If a=b and c≠0, then a/c=b/c If 2=2, then 2/4=2/4 Substitution Property If a=b, then a can be substituted for b in any equation. Distributive Property If a, b and c are real numbers, then a(b+c)= ab+ac If a=2, b=3 and c=x, then 2(3+x)= 6+2x SOLVING EQUATIONS FOR X Solve 6x+2= -3x-16 for x. Write your reason for each step. STATEMENTS 1. 6x+2= -3x-16 +3x +3x 2. 9x+2= -16 -2 -2 3. 9x= -18 4. X=- 2 REASONS 1. Given 2. Addition Property 3. Subtraction Property 4. Division Property TRY IN YOUR NOTEBOOKS Solve 3x+8= -4x-34 for x. Write your reason for each step. STATEMENTS REASONS 1. 3x+8= -4x-34 +4x +4x 2. 7x+8= -34 -8 -8 3. 7x= -42 1. Given 4. x= -6 4. Division Property 2. Addition Property 3. Subtraction Property SOLVE THE EQUATION FOR X. WRITE YOUR REASON FOR EACH STEP: 4X+9= -3X+2 PROPERTIES OF EQUALITY Reflexive Property For real numbers, a=a. 2=2 For segment lengths, AB=AB. For any angle A, m∠A= m∠A Symmetric Property For any real numbers a and b, if a=b then b=a. For segment lengths, if AB=CD then CD=AB For any angle, if m∠A=m∠B then m∠B=m∠A Transitive Property For any real numbers a, b and c, if a=b and b=c, then a=c For segment lengths, if AB=CD and CD=EF, then AB=EF. For any angle, if m∠A=m∠B and m∠B=m∠C, then m∠A=m∠C. HOW DO WE WRITE A PROOF? In the diagram, m∠ABD=m∠CBE. Show that m∠1=m∠3. A 1 B 2 3 C D E 1. m∠ABD=m∠CBE 1. Given 2. m∠ABD-m∠2= m∠1 2. Angle Addition Postulate 3. m∠CBE-m∠2= m∠3 3. Angle Addition Postulate 4. m∠ABD-m∠2= m∠CBE-m∠2 4. Substitution Property 5. m∠1= m∠3 5. Substitution Property DETERMINE WHETHER TO USE THE SYMMETRIC PROPERTY, REFLEXIVE PROPERTY OR TRANSITIVE PROPERTY 1. If m∠6= m∠7, then m∠7=m∠6. Symmetric Property 4. If m ∠A=m ∠B and m ∠B=m ∠C, then m ∠A=m ∠C. Transitive Property 2. If JK=KL and KL=MN, then JK=MN. 5. If XY=WZ, then WZ=XY. Transitive Property Symmetric Property 3. m∠6=m∠6 Reflexive Property 6. AB=AB Reflexive Property