Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 2.5 REASON USING PROPERTIES FROM ALGEBRA ALGEBRAIC PROPERTIES Addition Property If a=b, then a+c=b+c If 2=2, then 2+1=2+1 Subtraction Property If a=b, then a-c=b-c If 2=2, then 2-1=2-1 Multiplication Property If a=b, then ac=bc If 2=2, then 2(3)= 2(3) ALGEBRAIC PROPERTIES Division Property If a=b and c≠0, then a/c=b/c If 2=2, then 2/4=2/4 Substitution Property If a=b, then a can be substituted for b in any equation. Distributive Property If a, b and c are real numbers, then a(b+c)= ab+ac If a=2, b=3 and c=x, then 2(3+x)= 6+2x SOLVING EQUATIONS FOR X Solve 6x+2= -3x-16 for x. Write your reason for each step. STATEMENTS 1. 6x+2= -3x-16 +3x +3x 2. 9x+2= -16 -2 -2 3. 9x= -18 4. X=- 2 REASONS 1. Given 2. Addition Property 3. Subtraction Property 4. Division Property TRY IN YOUR NOTEBOOKS Solve 3x+8= -4x-34 for x. Write your reason for each step. STATEMENTS REASONS 1. 3x+8= -4x-34 +4x +4x 2. 7x+8= -34 -8 -8 3. 7x= -42 1. Given 4. x= -6 4. Division Property 2. Addition Property 3. Subtraction Property SOLVE THE EQUATION FOR X. WRITE YOUR REASON FOR EACH STEP: 4X+9= -3X+2 PROPERTIES OF EQUALITY Reflexive Property For real numbers, a=a. 2=2 For segment lengths, AB=AB. For any angle A, m∠A= m∠A Symmetric Property For any real numbers a and b, if a=b then b=a. For segment lengths, if AB=CD then CD=AB For any angle, if m∠A=m∠B then m∠B=m∠A Transitive Property For any real numbers a, b and c, if a=b and b=c, then a=c For segment lengths, if AB=CD and CD=EF, then AB=EF. For any angle, if m∠A=m∠B and m∠B=m∠C, then m∠A=m∠C. HOW DO WE WRITE A PROOF? In the diagram, m∠ABD=m∠CBE. Show that m∠1=m∠3. A 1 B 2 3 C D E 1. m∠ABD=m∠CBE 1. Given 2. m∠ABD-m∠2= m∠1 2. Angle Addition Postulate 3. m∠CBE-m∠2= m∠3 3. Angle Addition Postulate 4. m∠ABD-m∠2= m∠CBE-m∠2 4. Substitution Property 5. m∠1= m∠3 5. Substitution Property DETERMINE WHETHER TO USE THE SYMMETRIC PROPERTY, REFLEXIVE PROPERTY OR TRANSITIVE PROPERTY 1. If m∠6= m∠7, then m∠7=m∠6. Symmetric Property 4. If m ∠A=m ∠B and m ∠B=m ∠C, then m ∠A=m ∠C. Transitive Property 2. If JK=KL and KL=MN, then JK=MN. 5. If XY=WZ, then WZ=XY. Transitive Property Symmetric Property 3. m∠6=m∠6 Reflexive Property 6. AB=AB Reflexive Property