Download Reason Using Properties from Algebra

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 2.5
REASON USING PROPERTIES
FROM ALGEBRA
ALGEBRAIC PROPERTIES
Addition Property
If a=b, then a+c=b+c
If 2=2, then 2+1=2+1
Subtraction Property
If a=b, then a-c=b-c
If 2=2, then 2-1=2-1
Multiplication Property If a=b, then ac=bc
If 2=2, then 2(3)= 2(3)
ALGEBRAIC PROPERTIES
Division Property
If a=b and c≠0, then
a/c=b/c
If 2=2, then 2/4=2/4
Substitution
Property
If a=b, then a can be
substituted for b in any
equation.
Distributive Property If a, b and c are real
numbers, then a(b+c)=
ab+ac
If a=2, b=3 and c=x, then
2(3+x)= 6+2x
SOLVING EQUATIONS FOR X
Solve 6x+2= -3x-16 for x. Write your reason for
each step.
STATEMENTS
1. 6x+2= -3x-16
+3x
+3x
2. 9x+2= -16
-2 -2
3. 9x= -18
4. X=- 2
REASONS
1. Given
2. Addition Property
3. Subtraction Property
4. Division Property
TRY IN YOUR NOTEBOOKS
Solve 3x+8= -4x-34 for x. Write your reason
for each step.
STATEMENTS
REASONS
1. 3x+8= -4x-34
+4x
+4x
2. 7x+8= -34
-8 -8
3. 7x= -42
1. Given
4. x= -6
4. Division Property
2. Addition Property
3. Subtraction Property
SOLVE THE EQUATION FOR X. WRITE YOUR
REASON FOR EACH STEP: 4X+9= -3X+2
PROPERTIES OF EQUALITY
Reflexive Property
For real numbers, a=a. 2=2
For segment lengths, AB=AB.
For any angle A, m∠A= m∠A
Symmetric Property For any real numbers a and b, if a=b then
b=a.
For segment lengths, if AB=CD then CD=AB
For any angle, if m∠A=m∠B then
m∠B=m∠A
Transitive Property For any real numbers a, b and c, if a=b and
b=c, then a=c
For segment lengths, if AB=CD and CD=EF,
then AB=EF.
For any angle, if m∠A=m∠B and
m∠B=m∠C, then m∠A=m∠C.
HOW DO WE WRITE A PROOF?
In the diagram, m∠ABD=m∠CBE. Show that m∠1=m∠3.
A
1
B
2
3
C
D
E
1. m∠ABD=m∠CBE
1. Given
2. m∠ABD-m∠2= m∠1
2. Angle Addition Postulate
3. m∠CBE-m∠2= m∠3
3. Angle Addition Postulate
4. m∠ABD-m∠2= m∠CBE-m∠2
4. Substitution Property
5. m∠1= m∠3
5. Substitution Property
DETERMINE WHETHER TO USE THE SYMMETRIC PROPERTY,
REFLEXIVE PROPERTY OR TRANSITIVE PROPERTY
1. If m∠6= m∠7, then
m∠7=m∠6.
Symmetric Property
4. If m ∠A=m ∠B and m
∠B=m ∠C, then m ∠A=m
∠C.
Transitive Property
2. If JK=KL and KL=MN,
then JK=MN.
5. If XY=WZ, then WZ=XY.
Transitive Property
Symmetric Property
3. m∠6=m∠6
Reflexive Property
6. AB=AB
Reflexive Property
Related documents