Download Notes Over 9.4 Checking a Solution Using a Graph

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Notes Over 9.4
Checking a Solution Using a Graph
The solution, or roots of an equation
are the x-intercepts.
Solve the equation algebraically. Check the solutions
graphically.
1 2
1.3 x  12 3
3 2
x  36
x  6
1 2
y  x  12 V0,12
3
Notes Over 9.4
Checking a Solution Using a Graph
Solve the equation algebraically. Check the solutions
graphically.
2. 3 x  2  50
2
 22  2
3x  48
3
3
2
x  16
x  4
y  3 x  48 V0,48
2
Notes Over 9.4
Checking a Solution Using a Graph
Solve the equation algebraically. Check the solutions
graphically.
3.
x 7  2
2
7 7
2
x 9
x  3
y  x 9
2
V0,9
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
4.
x  x  12
2
 12  12
2
x  x  12  0
y  x  x  12
b
1
1


2 a1
2
x

1
1


1
1 2
V

,

12





4
,
y        12  2
3
4
2
2
2
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
x
4.
x  x  12
2
  4   4   12
2
16  4  12
 3    3   12
2
9  3  12
 4, 3
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
5.
x  5 x  6
2
6 6
2
x  5x  6  0
y  x  5x  6
b5
5


2 a1
2
1
5


5
5 2
V ,  
y     5 2   6  2 4 
2
2
x
2, 3
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
x
5.
x  5 x  6
2
 2
 5 2   6
4  10  6
2
3
 5 3   6
9  15  6
2
2, 3
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
6.
x  5x  6
2
6 6
2
x  5x  6  0
y  x  5x  6
b5
5


2 a1
2
x
1
5


5
5 2
V , 12 

1
,
y     5 2   6  2
6
4

2
2
Notes Over 9.4
Solving an Equation Graphically
Solve the equation graphically. Check the solutions
algebraically.
x
6.
x  5x  6
2
  1
 5 1   6
1 5  6
2
6
 5 6   6
36  30  6
2
 1, 6
Notes Over 9.4
Using Quadratic Equations in Real Life
7. Algebraically check the solution in Example 3.
Registration appears to be about 210 dollars.
210  0.63 5   15.08 5   151.57
210  0.63 25   15.08 5   151.57
210  15.75  75.4  151.57
210  59.65 151.57
210  211.22
2
Notes Over 9.4
Related documents