Download Solving Linear Systems Algebraically

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solving Linear Systems Algebraically
Section 3-2
Steps in Elimination
AKA: “Linear Combination”
 Steps:
1.
2.
3.
4.
ARRANGE equations in like terms and
multiply a term to attempt to cancel out a
variable
ADD the variables where at least one variable
cancels out
REPLACE the value into either equation
CHECK the solution
Example 1

Solve using Elimination
2 x  7 y  10

 x  3 y  3
2 x  7 y  10

(2) x  3 y  3
2 x  7 y  10
2 x  6 y  6
y4
Example 1
 Solve
using Elimination
2 x  7 y  10

 x  3 y  3
2 x  7 y  10

 x  3 y  3
y4
2 x  7(4)  10
2 x  28  10
2 x  18
x9
(9, 4)
Example 1
 Solve
using Elimination
2 x  7 y  10

 x  3 y  3
(9, 4)
2(9)  7(4)  18  28  10  10

(9)  3(4)  9  12  3  3
Example 2
 Solve
(2)
(3)
using Elimination
3 x  11 y  4

2 x  6 y  0
3 x  11 y  4

2 x  6 y  0
3 x  11 y  4
3 x  11(2)  4
3 x  18
x  6
6 x  22 y  8

6 x  18 y  0
4y  8
y2
( 6, 2)
Example 2
 Solve
using Elimination
3 x  11 y  4

2 x  6 y  0
( 6, 2)
4. CHECK the solution
3( 6)  11(2)  18  22  4  4

2( 6)  6(2)  12  12  0  0
Your Turn
 Solve
using Elimination
x  6 y  1

3 x  5 y  10
(-3) x  6 y  1

3 x  5 y  10
( 5,1)
5/24/2017 1:57 AM
3x  18 y  3 x  6(1)  1
3x  5 y  10
x  6 1
13 y  13 x  5
y 1
3-2 - Solving Systems through Substitution
Three pizzas and four sandwiches cost $34. Three
pizzas and seven sandwiches cost $41.50.
How much does a pizza cost? How much does a
sandwich cost?
3 x  4 y   34
Let x = pizza
(-1) 3 x  4 y  34
Let y = sandwich
3x  4  2.5  34
3 x  10  34
3 x  24
x8
3x  7 y  41.5
3x  7 y  41.5
3 y  7.5
Pizza cost $8
Sandwich cost $2.50
y  2.5
Sally has $21.40 in dimes and quarters, for a total of
100 coins.
How many of each kind of coin does Sally have?
Let d= dimes
Let q = quarters
d  76  100
d  24
(-10) d  q  100
10d  25q  2140
10d  10q   1000
10d  25q  2140
15q  1140
24 dimes
76 quarters
q  76
Assignment

Page 194 (6-9, 19, 20)
 Write the Problem!!!
 Show ALL WORK—STEPS
 Be NEAT
Related documents