Download Slide 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Separable Differentiable
Equations
Alternatively, we can find the solution to the DE in example 2 from yesterday
by rearranging the equation first, y >0.
dy
dx
 2y
1
dy  2dx
y
The variable in the separated differential
indicates how to take the antiderivative
Note: this is where the
‘+C’ appears
ln y  2x  C
y  e ( 2x c )
y  e 2x e C
y  C 1e 2x
The constant C1 is the
simplification of eC
Alternatively, we can find the solution to the DE in example 2 from yesterday
by rearranging the equation first in another way, y >0.
dy
dx
 2y
dx
1

dy  2y
1
x
ln y  C
2
2x  2C  ln y
y  e2x2C
y  e( 2x 2C)
y  e2x e2C
y  C 1e 2x
Take the reciprocals of both
sides
Solve the DE where
dy
dx
dy
dx
 2y  4 , y > 2
 2(y  2)
1
dy  2dx
y2
ln( y  2)  2x  c
y  2  e 2x C
y  C1e 2x  2
Factor out the
leading coefficient
Alternatively:
Solve the DE where
dy
dx
dy
dx
 2y  4 , y > 2
 2(y  2)
d( y  2)
 2( y  2)
dx
Ok this is different…
But consider the following:
d 2
( x )  2x
dx
and
From our
pattern of
slide 1
dN
 2N
dx
N  Ce  2 x
( y  2)  Ce2x
y  Ce2x  2
d 2
( x  5)  2x
dx
Thus
d 2
d 2
(x ) 
( x  5)
dx
dx
Related documents