Download Objective - To add and subtract polynomials.

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Objective - To add and subtract polynomials.
Monomial - A single term. A group of
single
numbers and/or variables tied
together by multiplication or
division but separated by
addition or subtraction.
Examples:
2
4 2
5ab c
2
a
3x y
5x
3
2xy
Coefficient - The number preceding a variable
in a variable term.
Like Terms
5x
3m
2
7xy
4
a
5
2 2
x y
3
Unlike Terms
4x
5x
y
2
3x
4
5xy
2y
m
2yx
a
yx
4x
2
2
2
5x y
3x
7xy
2
Polynomial - A variable expression
many
consisting of many terms
that can’t be combined.
Examples:
3
2y  3y  8
5x  4
7m 4  3am 2  4m  6
Binomials: (two-term polynomials)
2
2y

3
n 4
x x
Trinomials: (three-term polynomials)
3
x  3x  4
2
7y  3y  1
4
2
Add the following polynomials.
1) (a  2)  (3a  9)
4a  7
2) (x  x)  (7x  5)
2
2
8x  x  5
2
3) (4y  3y)  ( y  8y  7)
2
2
3y  5y  7
2
Subtract the following polynomials.
2
2
1) (8x  5)  (2x  4)
2
2
8x  5  2x  4
2
6x  9
2
2
2) (6k  3k  1)  (4k  2k)
2
2
6k  3k  1  4k  2k
2
10k  k  1
2
2
3) (8t  7)  (2t  5t  6)
8t  7  2t  5t  6
2
6t  5t  13
2
2
Subtract the following polynomials.
4) (7x  3x  2)  (4x  7x  5)
2
2
7x  3x  2  4x  7x  5
2
2
11x  10x  3
2
5) (4t  7)  (2t  3t  10)
2
4t  7  2t  3t  10
2
2t  t  17
2
A
B
C
Find the length of AC in terms of x.
1) AB  4x  5x
2
BC  3x  2x
2
4x  5x
2
+ 3x  2x
2
AC  AB  BC = 7x  7x
2) AB  6x  4x  5
2
BC  2x  20x  3
2
2
6x  4x  5
2
2x  20x  3
2
AC  AB  BC = 4x  16x  2
2
A
B
C
Find the length of BC in terms of x.
1) AC  x  3x
2
AB  3x  5x  4
2
x  3x
2
(3x  5x  4)
2
BC  AC  AB = 2x  2x  4
2) AC  5x  10x  7
2
AB   x  5x  1
2
2
5x  10x  7
2
(x  5x  1)
2
BC  AC  AB = 6x  15x  8
2
Find the area of quadrilateral ABCD in
terms of x.
A
B
2
x  x 1
2
x  x 1
2
5x  3x
2
4
+ 3x
2
2
2
3x  4
5x  3x
9x  2x  3
C
D
Find the area of LMP if the area of
2
rectangle LMNO is 10x  18x  4 .
M
L
2
LMN  5x  9x  2
2
2
(6x
 5)
6x

5
P
2
LMP   x  9x  3
O
N
1
LMN  (Re ct.LMNO)
2
1
2
LMN  (10x  18x  4)
2
Related documents