Download Solving Polynomial Equations of 3rd Degree and Higher

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solving Polynomial Equations
rd
of 3 Degree and Higher
STEPS:
1. Factor out GCF
2. Factor remaining
quadratic equation
1. If remaining
equation can not
be factored, use
quadratic
formula.
3. Solve all equations
for variable.
#1:
x 3  x 2  12 x  0
x x 2  x  12  0


xx  4x  3  0
x  0 x  4  0 x 3  0
x 3
x  4
Page 8
#3:
x  9 x  18 x  0
x 2 x 2  9 x  18  0
4

3
2

x 2 x  6x  3  0
x2  0 x  6  0 x  3  0
x 3
x0 x6
#7:
x  4x  4x
 4x 2  4x 2
3
2
Page 8
x 3  4 x 2  4 x
 4x  4x
x3  4 x 2  4 x  0


x x2  4x  4  0
xx  2x  2  0
x 0 x2  0 x2  0
x2
x2
#6:
x 4  5x 2  4  0
x2  4 x2 1  0



x  2x  2x 1x 1  0
x2  0
x2
x  2  0 x 1  0 x  1  0
x  2 x  1 x  1
x 3  3x 2  x  0
x x 2  3x  1  0
2
x  0 x  3x  1  0
#1B:

a 1
b  3
c 1
x

Page 8
What do we
do when we
can’t factor?
 b  b 2  4ac
x
2a
  3 
 32  411
21
3 5
x
2
Roots:
 3 5 3 5 
,
0,

2
2 

2 x 5  14 x 4  10 x 3  0
2 x3 x 2  7 x  5  0
2 x3  0 x 2  7 x  5  0
x0
#4B:
a 1
b  7
c5
x


  7  
 7 
21
 415
What do we
do when we
can’t factor?
7  29
x
2
 b  b 2  4ac
x
2a
2
Page 8
Roots:
 7  29 7  29 
,
0,

2
2 

8 x 3  20 x 2  8 x  0
4 x 2 x 2  5x  2  0
4x  0 2 x 2  5 x  2  0
x0
#1M:
a2
b  5
c2
x


  5 
 5
22
What do we
do when we
can’t factor?
5 9 53
x

4
4
 b  b 2  4ac
x
2a
2
Page
10
53 8
x
 2
4
4
53 2 1
x
 
4
4 2
 422
Roots:
1

0,2, 
2

Homework
• Page 8
#2,5,8 TOP
#2 bottom
• Page 10
#2 middle
Related documents